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SUMMARY

Single-cell RNA sequencing technologies suffer
from many sources of technical noise, including
under-sampling of mRNA molecules, often termed
‘‘dropout,’’ which can severely obscure important
gene-gene relationships. To address this, we devel-
oped MAGIC (Markov affinity-based graph imputa-
tion of cells), a method that shares information
across similar cells, via data diffusion, to denoise
the cell count matrix and fill in missing transcripts.
We validate MAGIC on several biological systems
and find it effective at recovering gene-gene relation-
ships and additional structures. Applied to the epithi-
lial to mesenchymal transition, MAGIC reveals a
phenotypic continuum, with the majority of cells
residing in intermediate states that display stem-
like signatures, and infers known and previously un-
characterized regulatory interactions, demonstrating
that our approach can successfully uncover regula-
tory relations without perturbations.

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) is fast becoming one of

the most widely used technologies in biomedical investigation.

However, a vexing challenge in single-cell genomics is that the

observedexpressioncountscapturea small randomsample (typi-

cally 5%–15%) of the transcriptomeof each cell (Grün et al., 2014;

Stegle et al., 2015). In the case of lowly expressed genes, this can

lead to lack of detection of an expressed gene, a phenomenon

called ‘‘dropout.’’ This impacts the signal for every gene, leading

to loss of gene-gene relationships in the data, obscuring all but

the strongest relationships. To overcome this sparsity, most

methods aggregate cells, collapsing thousands of cells into a
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small number of clusters. Alternatively, other methods aggregate

genes (e.g., principle component analysis [PCA]), creating ‘‘meta-

genes.’’ While these approaches cope with sparsity to some

extent, they lose single-cell or single-gene resolution.

To address these issues, we develop MAGIC (Markov affinity-

based graph imputation of cells), a computational approach for

recovering missing gene expression in single-cell data. MAGIC

leverages the large sample sizes in scRNA-seq (many thousands

of cells) to share information across similar cells via data

diffusion. MAGIC imputes likely gene expression in each cell,

revealing the underlying biological structure. MAGIC uses

signal-processing principles similar to those used to clarify blurry

and grainy images.We validateMAGIC on several biological sys-

tems and find it effective at recovering gene-gene relationships

and additional structures.
RESULTS

The MAGIC Algorithm
MAGIC relies on structure in the data; possible cell states are

constrained by regulatory mechanisms creating interdepen-

dencies between genes (Amir et al., 2013). While data are

observed in a high dimensional measurement space, cell pheno-

types can be approximately embedded in a substantially lower

dimensional manifold. This manifold can be represented using

a nearest neighbor graph, where each node represents a cell,

and edges connect most similar cells, based upon gene expres-

sion. Nearest neighbor graphs have been used to faithfully

recover subpopulations (Levine et al., 2015; Shekhar et al.,

2016) and developmental trajectories (Bendall et al., 2014; Hagh-

verdi et al., 2015, 2016; Setty et al., 2016). However, MAGIC uses

a diffusion operator (Coifman and Lafon, 2006a) to learn the un-

derlying manifold and map cellular phenotypes to this manifold,

restoring missing transcripts in the process.

MAGIC takes an observed count matrix and recovers an

imputed count matrix representing the likely expression for
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Figure 1. Steps of the MAGIC Algorithm

(i) The input data consist of amatrix of cells by genes (middle) of the data (right).

(ii) We compute a cell-by-cell distance matrix. (iii) The distance matrix is

converted to an affinity matrix (middle) using a Gaussian kernel. A graphical

depiction of the kernel function is shown (right). (iv) The affinities are normal-

ized, resulting in a Markov matrix (middle). The normalized affinities are shown

for a single point as transition probabilities (right). (v) To perform diffusion, we

exponentiate the Markov matrix to a chosen power t. (vi) We multiply the ex-

ponentiated Markov matrix (left) by the original data matrix (middle) to obtain a

denoised and imputed data matrix (right).

See also Figure S1.
each individual cell, based on data diffusion between similar

cells. For a given cell, MAGIC first identifies the cells that are

most similar and aggregates gene expression across these

highly similar cells to impute gene expression that corrects for

dropout and other sources of noise. However, due to data

sparsity, nearest neighbors in the raw data do not necessarily

represent the most biologically similar cells. Therefore, we use

data diffusion to construct a weighted affinity matrix represent-

ing a more faithful neighborhood of similar cells, and then use

this matrix to restore the data. With a sufficient number of cells,
this process (illustrated in Figure 1) increases weights on cells

that share similarity across a majority of biological processes.

Constructing the affinity matrix proceeds as follows: first PCA

is used as a preprocessing step, similar to other graph-based

approaches (Haghverdi et al., 2016; Setty et al., 2016; Shekhar

et al., 2016). MAGIC uses an adaptive (width) Gaussian kernel

to convert distances into affinities, so that similarity between

two cells decreases exponentially with their distance. The adap-

tive kernel serves to equalize the effective number of neighbors

for each cell, which helps recover finer structure in the data,

whereas the non-adaptive kernel collapses the data into the

densest regions (Figures S1A and S1B). From the affinity matrix,

we create a Markov transition matrix, M, representing the prob-

ability distribution of transitioning from one cell to another in a

single step.

Owing to technical noise, the ability to distinguish between

similarity due to biological correspondence versus spurious

chance is not possible. Mimicking scRNA-seq, if we randomly

subsample a fraction of the transcripts, the expression observed

across identical cells can appear dissimilar. However, these cells

likely share many neighbors, whereas spurious edges connect

cells that share few neighbors. Raising M to the power t results

in a matrix where each entry represents the probability that a

randomwalk of length t starting at cell iwill reach cell j (Figure 1v),

a process akin to diffusion. While the exponentiated Markov af-

finity matrix increases the number of cell neighbors, unlike the ef-

fect of increasing k in kNN-imputation, MAGIC does not bluntly

smooth and average over increasingly distant cells. Instead,

exponentiation refines cell affinities, increasing the weight of

similarity along axes that follow data density, thus phenotypically

similar cells have strongly weighted affinities, whereas spurious

neighbors are down-weighted.

In the imputation step, MAGIC learns from cells in each neigh-

borhood through multiplying the transition matrix by the original

data matrix (Figure 1vi), effectively restoring cells to the underly-

ing manifold. In this data diffusion process, cells share informa-

tion through local neighbors in a process that is mathematically

akin to diffusing heat through the data, where raising the diffu-

sion operator to the t-th power is akin to a t-step random walk

through the data. Exponentiation is essentially a low-pass filter

on the eigenvalues, which serves to eliminate noise dimensions

with small eigenvalues, while simultaneously learning the mani-

fold structure. While we use PCA to gain more robustness for

computing the affinity matrix, the imputation is performed using

the count matrix before PCA. Thus, while we average data

across cells, each individual cell retains a unique neighborhood,

resulting in a unique expression vector.

To select an optimal t, we consider the impact of t on the final

imputed data. We evaluate the degree of change between the

imputed data at time t and time t-1 and stop after this value sta-

bilizes. As t increases, we observe two regimes (Figures S1C and

S1D), a rapidly changing imputation regime, and after conver-

gence, a smoothing regime. In the imputation regime, the first

few steps of diffusion learn the manifold structure and remove

the noise dimensions. As t increases, we rapidly capture rela-

tions between cells that are biologically very similar, and only ap-

peared different due to collection artifacts. At larger values of t,

the structure of the data has already been recovered and
Cell 174, 716–729, July 26, 2018 717



Figure 2. MAGIC Applied to Mouse Myeloid

Progenitor Data

Mouse bone marrow dataset (Paul et al., 2015).

(A) Gene expression matrix for hematopoietic

genes (top) and characteristic surface markers of

immune subsets (bottom) before and after MAGIC.

See also Figure S2A.

(B) Scatterplots of several gene-gene relationships

after different amounts of diffusion. In these scat-

terplots, each dot represents a single cell, plotted

according to its expression values (measured at

t = 0 and imputed for t = 1,3,7), and colored based

on the clusters identified in Paul et al. (2015).

(C) Shows a 3D relationship before and after

MAGIC (with diffusion time t = 7).

(D) FACS measurements of CD34 and FCGR3

protein levels versus transcript levels, before

and after MAGIC. Both FACS measurements

and mRNA levels are log-scaled as per FACS

conventions.
diffusing further would smooth out trends that likely represent

real biology. The knee-point (Figure S1C), determines an

optimal t. A synthetic dataset demonstrates that best correspon-

dence between the ground truth and imputed data is achieved at

the defined optimal t (Figure S1D). See STAR Methods for more

details.
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MAGIC Enhances Structures in
Bone Marrow
We first evaluated MAGIC on a mouse

bone marrow dataset (Paul et al., 2015),

collected with MARS-seq2 (Jaitin et al.,

2014). The data matrix is sparse and cells

are missing many canonical genes in their

respective cell types (Figure 2A). At the

transcript level, canonical surfacemarkers

typically used to identify immune subsets

are lowly expressed and hence detected

at low levels. For example, in themonocyte

clusters C14, C15, only 1.6%cells express

CD14 and 5.8% cells express CD11b, and

only10%of thedendritic cells (clusterC11)

express CD32. After MAGIC (npca = 100,

ka = 4, t = 7), 94% of monocytes express

CD14, 98% express CD11b, and 97% of

dendritic cells express CD32 at significant

levels (Figure S2A).

The sparsity of the data is more evident

when viewing the data with biaxial plots

(Figure 2B, t = 0). It is rare for both genes

to be observed simultaneously in any

given cell, obscuring relationships be-

tween genes. MAGIC restores missing

values and relationships, recreating

the biaxial plots typically seen in flow

cytometry. Figure 2B shows established

relationships during hematopoiesis that

are undetectable in the raw data. By
superimposing the reported clusters onto the biaxial plots, we

see that cells are grouped by cluster, and gene-gene relations

gradually change between clusters as the cells mature and

differentiate. The effects of the diffusion process are also

demonstrated: a clear and well-formed structure emerges as t

(number of times the matrix is exponentiated) grows. Figure 2C



Figure 3. MAGIC Preserves Cluster Structure

(A) Mouse retinal bipolar cells from Shekhar et al.

(2016) showing 2D relationships before and after

MAGIC. Cells colored by Phenograph clusters show

differing trends among clusters.

(B and C) Mouse cortex and hippocampus cells

(Zeisel et al., 2015). (B) Diffusion components before

MAGIC (i) and after MAGIC (ii) colored with clusters

show that MAGIC does not merge clusters. (C) Rand

index (y axis) of Phenograph clustering after

dropout, with MAGIC (red) or without MAGIC (blue),

against Phenograph original data. Rand index is

higher after MAGIC.

(D) Synthetic mixture of two Gaussians embedded in

high dimension (original, left), 10% and 30% of the

values are corrupted by randomly switching values

between the clusters (middle). MAGIC is able to fix

the majority of the corruptions (right); 98% recovery

for 10% corruption and 81% recovery for 30%

corruption.
demonstrates gene-gene relationships in 3 dimensions. Little

structure is visible in the raw data, yet after MAGIC, we observe

the emergence of a continuous developmental trajectory.

To provide further validation, we utilize the index sorting avail-

able with MARS-seq2 (Paul et al., 2015), providing fluorescence-

activated cell sorting (FACS)-based measurement for CD34 and

FCGR3. While the data have poor correlation between protein

and original mRNA, after MAGIC, this correlation substantially in-

creases for both proteins: FCGR3 from 0.55 to 0.88 and CD34

from 0.39 to 0.73 (Figure 2D). We note that a comparison be-

tween protein and transcriptomic data reported a correlation of

up to 0.6 between mRNA and protein in bulk data (Greenbaum

et al., 2003).

MAGIC Retains and Enhances Cluster Structure in
Neuronal Data
We next evaluated MAGIC on two datasets measuring neuronal

cells (Shekhar et al., 2016; Zeisel et al., 2015) known to have a
high degree of functional specificity. End-

state differentiated neural cells are ex-

pected to have well-separated cluster

structure.

We analyzed a mouse retina dataset

collected with drop-seq (Shekhar et al.,

2016). Following (Shekhar et al., 2016), we

clustered the cells (using the original data)

with Phenograph (Levine et al., 2015)

(k = 30). To verify that MAGIC preserves

cluster structure, we ran MAGIC (npca =

100, ka = 10, t = 6), re-clustered the post-

MAGIC data, and computed the rand index

(a measure of similarity between clustering

solutions [Rand, 1971]) between the pre-

MAGIC and post-MAGIC clusters, resulting

in a rand index of 0.93.

MAGIC extends beyond clustering to

highlight heterogeneity and gene-gene re-

lationships within each cluster. We plotted
various gene-gene relationships before and after MAGIC, and

colored cells by their cluster, finding gene-gene relations that

vary across clusters (Figure 3A). For example, the ON bipolar

cone markers SCGN and GRM6 relate to each other differently

in different clusters of cells. In clusters 5–7, SCGN and GRM6

are both highly expressed and show a positive relationship

(Figure 3Ai). Clusters 14–17 have high expression of SCGN and

low expression of GRM6 and show a negative relationship within

the clusters. These trends and distinctions are not detectable

prior to MAGIC and would be missed by simple population

averaging.

Next, we assessed MAGIC’s ability to maintain clusters using

a deeply sequenced mouse cortex dataset from Zeisel et al.

(2015) collected with smart-seq2 (Islam et al., 2014). MAGIC

preserved the discrete nature of the clusters and did not add

spurious intermediate states between them; diffusion compo-

nents remain the same before and after MAGIC (Figure 3B).

The relatively deep sampling of this dataset enabled a
Cell 174, 716–729, July 26, 2018 719



systematic evaluation, where we dropout transcripts from the

original data, cluster, and compare the original clustering, before

and after MAGIC. We dropped out up to 90% of the data and

compared clustering solutions. While clustering on the drop-

ped-out data steadily decreases in quality (dipping to Rand index

0.6 at 80% dropout), clustering after MAGIC retains a consistent

quality (Rand index 0.89–0.94) throughout all levels of dropout,

including 90% (Figure 3C).

Evaluating MAGIC’s Accuracy and Robustness
To illustrate MAGIC’s ability to correct for contamination (e.g.,

ambient mRNA or cell barcode swapping), we generated a syn-

thetic test case creating two cell clusters (Gaussian mixture in

high dimensions) and then randomly selected a fraction of matrix

entries and switched their values between clusters (10% and

30% corruption). We used MAGIC (ka = 10, t = 4, npca = 10) to

correct this high-frequency noise. Figure 3D shows that while

corruption leads to placing cells in the wrong clusters, MAGIC

is able to correct this: 98% recovery for 10% corruption and

81% recovery for 30% corruption.

To quantitatively evaluate the accuracy of MAGIC’s imputa-

tion, we created two synthetic datasets with drop out, where

ground truth is known. By directly comparing the original and

imputed data, we found that MAGIC was able to correctly

recover ground truth data both qualitatively and quantitatively

(Figures S2B, S2C, S3A, and S3B). MAGIC can also capture

multivariate relations effectively, the agreement between the

original and imputed data is even higher in the case of gene-

gene correlations (Figure S3Aii), likely because these correla-

tions are part of the structure that MAGIC harnesses for its impu-

tation. We performed systematic robustness analysis on our

epithelial-to-mesenchymal transition (EMT) dataset and find

that MAGIC is robust to sub-sampling of cells (Figure S3C) and

to different parameters (Figures S3D and S3E). See STAR

Methods for full details.

Characterizing the Epithelial-to-Mesenchymal
Transition
We chose to study EMT, a cell state transition during which cells

gradually lose epithelial markers (including E-cadherin, Epcam,

and epithelial cytokeratins), and gain mesenchymal markers

(including Vimentin, Fibronectin and N-cadherin) (Nieto et al.,

2016). At a transcriptional level, multiple drivers of EMT have

been characterized and include the transcription factors ZEB1,

SNAIL (SNAI1), and TWIST1. However, knowledge of the EMT

process has been largely derived from studies comparing the

extreme states of EMT (i.e., the beginning epithelial state with

the endpoint mesenchymal state). Moreover, most studies

have been conducted in bulk where the state of individual cells

is not resolved. Hence, while the initial and the final outcome of

EMT are well characterized, little is known about intermediary

states.

Transformed mammary epithelial cells (HMLE) were induced

to undergo the EMT via transforming growth factor b (TGF-b)

treatment (8 days) and measured using inDrops (Klein et al.,

2015). We observe that induction of EMT is asynchronous;

each cell progresses along the transition at a different rate.

Consequently, on days 8 and 10, we see that cells reside in all
720 Cell 174, 716–729, July 26, 2018
phases along the continuum of the EMT. MAGIC unveils a con-

tinuum of transitional states that comprise EMT. Before MAGIC,

the canonical decrease in CDH1 (E-cadherin) coinciding with an

increase in VIM (Vimentin) and FN1 (Fibronectin) is obscured. Af-

ter MAGIC (npca = 20, ka = 10, t = 6), this relationship is success-

fully recovered (Figure 4A). ZEB1, a key transcription factor

known to induce EMT (Lamouille et al., 2014), progressively in-

creases as VIM and FN1 increase. Another progression revealed

by MAGIC involves two branches that deviate from the main

structure, which display an increase in mitochondrial RNA, re-

flecting a progression into apoptosis (Figure 4A). The apoptotic

state is supported by the rise of additional apoptotic markers

in these cells (data not shown).

Characterizing Intermediate States during EMT
A surprising revelation is that most of the cells (79%) reside in an

intermediate state that is neither epithelial, nor mesenchymal.

Moreover, the intermediate cells are highly heterogeneous,

occupying a multi-dimensional manifold that does not seem to

follow a simple one-dimensional progression. Thus, we charac-

terized this structure and, in particular, its boundaries. We used

archetypal analysis (Cutler and Breiman, 1994) to characterize

the extreme phenotypic states (Shoval et al., 2012) and states

that lie in between these extrema. While archetypal analysis

has been used to characterize single-cell data (Korem et al.,

2015), MAGIC learns a better-formed structure that is amenable

to archetypal analysis (Figures 4A and 4B).

Archetype analysis identified 10 archetypes (AT) in our data.

While these archetypes represent extrema in a higher-dimen-

sional space, Figure 4C shows their projection onto two different

3D plots. We use the neighborhood of cells around each arche-

type to characterize the gene expression profile for that arche-

type (see STAR Methods) and find unique gene expression pat-

terns for each AT (Figure 4D). We performed differential gene

expression analysis (see STARMethods) to gain amore compre-

hensive characterization of each AT (Figures 4E; Table S1).

These archetypes fall into the following categories: ‘‘epithelial,’’

AT6, AT7; ‘‘intermediary,’’ AT1 to AT5; ‘‘mesenchymal,’’ AT9;

and ‘‘apoptotic,’’ AT8, AT10. We performed 100 random sub-

samplings of the cells, and found we repeatedly identified a

very similar set of ATs, where similarity was quantified by corre-

lating AT gene expression (Figure S4A), demonstrating the ATs

are robust.

The epithelial ATs (AT6 and AT7) are defined by strong epithe-

lial marker expression including CDH1, CDH3, MUC1, and

CD24. The transcriptional profile of AT7 includes higher ESR2

and GATA3, commonly associated with the luminal mammary

epithelial cells, and higher CD24 and CDH1, suggesting a more

differentiated epithelial phenotype than AT6. Of note, AT6 and

AT7 express high levels of SOX4, recently shown to be a master

regulator of a TGF-b-induced EMT (Tiwari et al., 2013). The

mesenchymal AT9 is characterized by high expression of core

EMTTFsSNAI1, ZEB1, SMAD4, TGFB1, and TWIST1 (Figure 4E).

Thus, AT9 likely represents cells that have undergone EMT in

response to TGF-b.

Our analysis highlights five intermediate ATs (AT1–AT5), which

reside along a continuous spectrum of phenotypes, supporting

recent findings suggesting that cells undergoing the EMT move



Figure 4. MAGIC Recovers a State Space in

EMT Data

EMT data collected 8 and 10 days after TGF-b

stimulation of HMLE breast cancer cells.

(A) 3D scatterplots between canonical EMT genes

CDH1, VIM, and FN1. Left: before MAGIC. Middle:

after MAGICwith cells colored by the level of ZEB1.

Right: MT-ND1. See also Figure S3.

(B) 3D PCA plots before MAGIC (i) and after MAGIC

(ii) with cells colored by levels of ZEB1, MYC, and

SOX4 respectively.

(C) 3D scatterplots after MAGIC, red dots represent

each of the 10 archetypes in the data. Plotted by

(left) CDH1, VIM, and FN1, and (right) PCA.

(D) Left: Archetypal neighborhoods, cell colored

by archetype, gray cells are not associated with

any archetype. Histograms represent distribu-

tions of genes in archetypal neighborhoods, co-

lor-coded by the colors shown in the leftmost

plot.

(E) A subset of differentially expressed genes for

each archetype (columns) including highlighted

genes, transcription factors, and chromatin modi-

fiers. Additional differentially expressed genes are

shown in Table S1.

See also Figure S4.
through a series of partial and/or metastable cell states (Nieto

et al., 2016; Tam and Weinberg, 2013). AT2 shows a similar

gene expression profile as AT7, including upregulation of SOX4
and is closest to the epithelial state. How-

ever, AT2 expresses a recently character-

ized partner in EMT, KLF5 (David et al.,

2016). AT3 is closest to the mesenchymal

state, with SMAD3 and mesenchymal

regulator MSX1 upregulated. AT1, AT3,

and AT4 all express a large number of

chromatin modifiers, including EZH2,

and several CBX genes, suggesting that

these might play a role in the reprogram-

ming. AT1, AT4, and AT5 segregate from

the other ATs with concomitant increase

in multiple embryonic genes (including

TRIM28, FOXB1, HOXA5, HOXB2, and

HOXA3). Indeed, it has been postulated

that epithelial cells undergoing EMT may

revert to a more primitive state before

acquiring the ability to differentiate into

a mesenchymal cell (Ben-Porath et al.,

2008). Together these data suggest AT1

and AT4, have entered into a marked

reprogramming phase of the EMT, while

AT3 is further along this reprogram-

ming phase, further supported by the

increasing levels of VIM, along this pro-

gression. Gene set enrichments for the

ATs appear in Table S1.

Applying a similar archetypal analysis

to the data prior to MAGIC fails to find
distinct archetypes that differ in their expression profiles (Figures

S4B–S4D). Further, genes involved in the EMT process do not

vary across the identified archetypes. Thus, the structure
Cell 174, 716–729, July 26, 2018 721



Figure 5. Gene-Gene Relationships and

kNN-DREMI

(A) 2D scatterplots before and after MAGIC.

(B) Illustrates the computation of kNN-based den-

sity estimation on an 18 3 18 grid, shown as gray

points with data points shown in black. Each grid

point (yellow and red grid points are examples) is

given density inversely proportional to the volume

of a circle with radius r equal to the distance to its

nearest data neighbor (black point). After density

estimation on the grid points, the grid is coarse

grained into a 6 3 6 discrete density estimate

(red and yellow squares show coarse grained

partitions) by accumulation of all densities within

each square bin.

(C) The steps for computing kNN-DREMI are shown

for EZH2 (y axis) and VIM (x axis) before MAGIC,

with (i) a scatterplot, (ii) kNN-based density esti-

mation on a fine grid (60 3 60), (iii) coarse-grained

joint probability estimate on 20 3 20 partition,

and (iv) normalization of joint probability to obtain

conditional probability density, resulting in kNN-

DREMI = 0.28.

(D) Same steps as (C) shown after MAGIC resulting

in a kNN-DREMI = 1.02.

See also Figure S5.
revealed by MAGIC enabled the characterization of previously

unappreciated intermediate states.

MAGIC Reveals Gene-Gene Relationships
The core-regulatory circuit defining EMT has been well estab-

lished, with both ZEB1 and SNAIL1 as potent repressors of the

epithelial phenotype. However, the breadth of targets regulated

by these EMT-TFs remains largely unknown. Defining the EMT

circuitry, and importantly, the timing of different regulatory fac-

tors, can shed light upon how this state transition occurs.

The asynchronous nature of the data allows us to explore tem-

poral trends as cells progress from the epithelial to the mesen-

chymal state. We organize the cells along a pseudo-time pro-

gression, using VIM expression as a proxy for EMT state. Thus,

we can observe temporal trends of regulatory factors along

this transition. However, TFs are typically expressed at low levels

and the signal is obscured. For example, the biaxial plots of

both ZEB1 and SNAI1 against VIM lack any discernable trend
722 Cell 174, 716–729, July 26, 2018
(Figure 5A). However, after imputation,

the rise in these key TFs is revealed, reca-

pitulating their known temporal trends.

A considerable number of regulators

peak at intermediate levels of VIM (e.g.,

MYC and SNAI2, Figure 5A). The activity

of these genes is restricted to intermediate

states, whereas their expression is simi-

larly low in both the epithelial and mesen-

chymal states and would hence bemissed

by studies that focus only on end states.

To systematically explore gene-gene in-

teractions, we need a quantitative metric

to score statistical dependency between
genes, which takes into account non-linearity observed in the

data (e.g., MYC and SNAI2).

To quantify relationships, we adapted DREMI (Krishnaswamy

et al., 2014) to scRNA-seq data, which measures statistical

dependency between genes. DREMI captures the functional

relationship between two genes across their entire dynamic

range. The key change to kNN-DREMI is the replacement of

the heat diffusion-based kernel-density estimator from (Botev

et al., 2010) by a k-nearest neighbor-based density estimator

(Sricharan et al., 2012) (Figure 5B), which has been shown to

be an effective method for sparse and high dimensional datasets

(see STAR Methods). Moreover, we show that kNN-DREMI is

highly robust over a wide range of parameters (Figure S5A).

We illustrate this computation using the relationship be-

tween VIM and EZH2 on the same data before MAGIC (Fig-

ure 5C) and after MAGIC (Figure 5D). We note that Figure 5C

is representative of almost any pair of genes in the data,

even gene-pairs that are known to be related. The kNN-DREMI



score between VIM and EZH2 is 0.28 and 1.02, before and

after MAGIC, respectively. For perspective, Figure S5B shows

a histogram of DREMI scores of 10,000 random gene pairs.

Note, there is limited correlation between DREMI before and

after MAGIC (Figure S5C), indicating that MAGIC does not

simply shift the values. Moreover, DREMI is able to capture

gene-gene dependencies beyond correlation (Figures S5D

and S5E).

Characterizing Expression Dynamics Underlying EMT
We next constructed a genome-wide view of expression dy-

namics during the course of EMT to assess which genes change,

when, and how. We filtered out apoptotic cells (based MT-ND1

expression) and use the remaining cells to compute kNN-DREMI

between VIM and all genes. We found that the majority of the

genes demonstrate a temporal trend that follows VIM and

selected 13,487 genes having kNN-DREMI >0.5 with VIM for

further study.

We used the DREVI plot (Figure 5Div) to cluster genes based

on the shape and timing of their relationship with VIM (see

STARMethods). This resulted in 22 groups of genes with distinct

temporal trends. This clustering filters noise by averaging over

trends with roughly similar shape and timing. We then fit a spline

curve to each cluster, estimate the timing of peak expression,

and order the clusters based on this timing.

The result is a global map of the pseudo-temporal gene dy-

namics leading to the mesenchymal state (Figure 6A), with the

majority of the genes (2/3 of the genome) participating in this

transition with clear temporal trends. We observe clusters of

genes that change expression in waves as VIM rises, with three

modes of behavior that vary in their timing. The first set of clus-

ters decrease with VIM, for example, SDC1 and LAMA3, which

are both involved with cell adhesion and binding. There are

genes that increase and then decrease before entering the

mesenchymal state, including MYC and EZH2. Finally, as cells

transition into the mesenchymal state, a large number of genes

monotonically increase, including the canonical EMT-TFs

ZEB1, TWIST, SNAIL, and SLUG. A full list of genes and their

associated clusters appear in Table S2.

To ensure these pseudo-temporal dynamics are robust and

representative of EMT, we repeated this analysis with three

other canonical markers of the mesenchymal state, CDH2,

ITGB4, and CD44. The resulting gene dynamics are both visually

and quantitatively similar for all four markers of EMT progression

(Figures S6A and S6B).

Characterization of ZEB1 Targets
We have shown that MAGIC can recover gene-gene relation-

ships, as well as a fine-grained pseudo-time ordering of gene

activation. This offers the possibility of directly learning gene

regulatory networks at large scales without perturbation. While

DREMI only suggests statistical dependency, incorporating

pseudo-time can indicate a causal relationship. In case of activa-

tion, we assume that target’s expression should peak after the

TF. Thus, we harness the temporally ordered clusters to limit po-

tential targets only to those that peak after the regulator. Addi-

tionally, the expression of the regulator should be strongly infor-

mative of the expression of its targets, meaning we should only
consider genes that have strong kNN-DREMI with the TF. These

two criteria combined can predict a set of candidate targets for

each TF (see STAR Methods).

With respect to the transcriptional targets of the EMT-TFs, it is

clear that a certain level of redundancy exists. However, a recent

study suggests that there are actually profound differences in

the transcriptional programs they induce (Ye et al., 2015). We

focused on ZEB1, a key regulator of EMT whose transcriptional

targets remain poorly defined to date.We found 4,509 genes that

changed with EMT and peaked along with or after ZEB1 (Fig-

ure 6A), and among these 1,085 genes had DREMI > = 1 with

ZEB1 (Figure 6B). We predict that ZEB1 activates these genes,

either directly or indirectly. See Table S3 for full list of targets.

To validate our predicted targets of ZEB1, we used a variant of

the HMLE cell line, where ZEB1 can be overexpressed using a

Dox-inducible promoter. We measured the cells after 2 days of

continuous Dox treatment (see STAR Methods), which is suffi-

cient to induce significant numbers of mesenchymal cells (10%

of the cells). In the ZEB1 induction, we expect ZEB1 targets to

be upregulated relative to other genes. For a given set of genes

(e.g., list of predicted targets), we define an impact score, which

compares the relative ranking of gene expression between the

ZEB1 and TGF-b inductions (see STAR Methods).

Our predicted ZEB1 targets are indeed upregulated in the

ZEB1 induction with a significance of p = 3.1E�73, against a

background of all genes involved in EMT (Figure 6C). Including

all 4,509 genes that peak after ZEB1 results in a significant but

diminished impact score (Figure 6D, p = 0.004), indicating that

while ZEB1 is a key regulator of EMT, there are additional regu-

latory factors at play in the TGF-b-induced EMT, even during late

stages of the transition. Predicting targets based on DREMI

with ZEB1 alone results in an impact score that is not significant

(Figure 6E, p = 0.13). We note that our prediction focuses only

on genes activated by Zeb1, whereas Zeb1 is also a potent

repressor, indeed among these high DREMI genes, �1/3 are

negatively correlated with ZEB1.

Our top predicted targets include many genes known to be

involved in EMT, including SNAI1, ZEB2, BMP (bone morpho-

genic) antagonist family proteins, and MMP (matrix metalopro-

teinase) family proteins such as MMP3. In addition, we see

proteins involved in cell cycle, remodeling of cell cytoskeleton,

extracellular matrix remodeling, and cell migration. This in-

cludes: CDKN1C, a negative regulator of proliferation, RHOA,

involved in reorganization of the actin cytoskeleton and regulates

cell shape, attachment, and motility, CCBE1, involved in extra-

cellular matrix remodeling and migration, and interestingly

NTN4, normally involved in neural migration. While these genes

are less known in their EMT involvement, their phenotypic anno-

tations match with known phenotypic changes involved in EMT,

providing further evidence that ZEB1 is critical in activating

a myriad of processes that result in cellular trans-differentiation.

Thus, we have demonstrated that by combining MAGIC,

pseudo-time, and kNN-DREMI, we are able to predict regulatory

targets without perturbation.

Systematic Validation of an EMT Regulatory Network
To build a global regulatory network of EMT, we selected all TFs

that change considerably along EMT (kNN-DREMI with VIM
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Figure 6. Gene Expression Dynamics Un-

derlying EMT and TF Target Predictions

(A) Expression of genes (y axis) ordered by DREVI-

based clustering and by peak expression along

VIM (x axis). ZEB1 is highlighted with dashed line.

Representative DREVI plots with VIM shown to

the right.

(B) Left: Distribution of kNN-DREMI with ZEB1.

The dashed line marks the threshold for genes that

we include in the prediction. Right: DREVI plots

and DREMI values for a set of example genes

above the threshold (top row) and below threshold

(bottom row).

(C) Impact score of the predicted ZEB1 targets.

(D) Impact score of all genes that peak after ZEB1.

(E) Impact score of all genes with kNN-DREMI

against ZEB1 > = 1.

(F) Histogram of 292 FDR-corrected p values (log

transformed) obtained using a hypergeometric

test on TF-target predictions overlap with targets

obtained from ATAC-seq data, 268 out of 292 TFs

have p value < 0.05.

(G) Expected number of genes in intersection

(log10 scale, x axis) based on the hypergeometric

distribution versus the observed intersection

(log10 scale, y axis). For all TFs except one, the

observed intersection is higher than expected

from random. For 268 TFs (blue points), the dif-

ference is significant, and 24 (red points) are not

significant.

See also Figure S6 and Tables S2 and S3.
is >0.5) and predicted targets of each using the same analysis

applied to ZEB1. This resulted in a large regulatory network

consisting of 719 regulators over a total of 11,126 targets (Table

S3). To systematically validate our target predictions, we used

ATAC-seq (assay for transposase-accessible chromatin using

sequencing) (Buenrostro et al., 2013) as an independent and
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well-accepted approach for target pre-

diction (see STAR Methods) (Kundaje

et al., 2015). ATAC-seq was carried out

on HMLE cells 8 days following TGF-b

stimulation. Cells were FACS-sorted by

CD44+ to enrich for the mesenchymal

population.Weused theATAC-seqpeaks

combined with motif analysis to derive a

set of targets for each TF using standard

approaches (see STAR Methods). Note,

we do not expect the two approaches to

perfectly align: our predictions identify

both direct and indirect targets of a TF,

whereas ATAC-seq only captures direct

targets. ATAC-seq identifies binding of

TFs that are activating, poised, or inhibit-

ing, whereas our predictions only focus

on TF activation. Nevertheless, if our pre-

dictions are accurate, we expect a signif-

icant overlap between the two sets.

For each of 292 TFs in our predicted

regulatory network, for which we also
had ATAC-seq-based predictions, we used the hypergeomet-

ric distribution to assess the significance of overlap between

the two target sets and false discovery correction (FDR) to cor-

rect for multiple hypothesis testing (see STAR Methods). We

find the overlap is greater than expected for 291/292 TFs,

and after FDR this overlap is significant for 268/292 TFs



Figure 7. Comparison of MAGIC to Other Imputation and Smoothing Methods

(A) Comparison shown on bone marrow data (as in Figure 2), raw data (first column), and MAGIC imputed (second column). The other columns show kNN-based

imputation, smoothing on diffusion components 1 to 2, and smoothing on CD34, respectively.

(B) The same as in (A) but for the EMT data.

See also Figure S7.
(Figures 6F and 6G). Thus, our predictions significantly over-

lapped with targets derived from ATAC-seq for 92% of the

TFs tested.

To directly evaluate the gene-gene relationships recovered

by MAGIC, we compared DREMI scores between targets and

non-targets for each of 418 TFs and compared the distribution

of DREMI scores using a one-sided Kolmogorov-Smirnoff (KS)

test (see STAR Methods). In this analysis, we comprehensively

evaluate all TFs with ATAC-seq-based predictions (regardless

of their relationship to VIM) and all targets, regardless of

pseudo-time ordering. We find that 372/418 TFs have signifi-

cantly higher DREMI score with their ATAC-seq-based targets

than with other genes with p < 0.05, whereas many of these

are insignificant before MAGIC. Figure S6D shows distributions

for ZEB1, SNAI1, and MYC, after MAGIC all have significant

KS scores (p = 4.7e�25, p = 3e�25, and p = e�8, respectively),
whereas none of these are significant prior to MAGIC (p = 0.16,

p = 0.99, and p = 0.99, respectively).

In summary, we validated a computational approach to build

a large-scale regulatory network from scRNA-seq data without

genetic perturbations.

Comparison of MAGIC to Other Methods
WecompareMAGIC to kNN-imputation and diffusionmaps using

a few known gene-gene relationships from the bone marrow

(Figure 7A) and EMT (Figure 7B) datasets. Contrary to MAGIC,

the simpler kNN-imputation approach fails to recover the known

gene-gene relationships (Figure 7, peach). Unlike simple smooth-

ing over a kNN-graph, by propagating data using the diffusion

operator,MAGIC is able to recover data using longer range, global

features. In essence, this pulls in noisy outlier data to the manifold

and restores the structure.
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A popular aggregation approach utilizes diffusion maps (Coif-

man and Lafon, 2006a), which like MAGIC, compute a diffusion

operator that defines similarity between data points along a

manifold. However, diffusion maps find diffusion components

(DCs), a nonlinear equivalent to a PCA, which have been recently

utilized to find pseudotime trends in developmental systems

(Haghverdi et al., 2015, 2016; Setty et al., 2016). Moving average

approaches have been successfully used to observe gene

trends along DCs, smoothing along a single diffusion compo-

nent, one gene at a time. This performs well when DCs corre-

spond to tight developmental pseudo-time trajectories, and

only for developmentally related genes whose major component

of variation is singular. Moreover, because smoothing occurs

one gene at a time, the approach cannot be used to reveal

gene-gene relationships. MAGIC, by contrast, uses the diffusion

operator to propagate gene expression information between

similar cells, taking all diffusion components and genes into ac-

count simultaneously in its inference.

The difference is illustrated in Figure 7, sky blue: while smooth-

ing alongDC1 (corresponding to erythrocytes) results in a roughly

correct trend forCD235a (an erythrocytemarker), the relationship

is entirely incorrect for markers belonging to other lineages such

as CD11B. Moreover, this approach is unable to recover gene-

gene relationships even in cases like CD335a and CD34, whose

trends both followDC1 relativelywell. Additionally, the EMTdata-

set does not follow a simple trajectory, and therefore diffusion

components fail to capture trends for even the most canonical

TFs in this process. For instance, ZEB1 or SNAIL versus VIM

shows a fluctuating rather than positive trend.

We also compare MAGIC to methods used to fill in missing

data, SVD-based low-rank data approximation (LRA) (Achlioptas

and McSherry, 2007), and nuclear-norm-based matrix comple-

tion (NNMC) (Candes and Recht, 2012). Both methods have a

low-rank assumption (i.e., like MAGIC), and they assume that

the intrinsic dimensionality of the data is much lower than the

measurement space and utilizes a singular value decomposition

(SVD) of the data matrix. We compared the performance of the

three techniques on synthetic and real data (Figure S7), where

we demonstrate MAGIC is uniquely well suited to handle the

dropout rampant in scRNA-seq data (see STAR Methods).

A likely explanation for NNMC’s poor performance is that it

‘‘trusts’’ non-zero values and only attempts to impute possibly

missing zero values. Whereas in scRNA-seq, dropout of mole-

cules impacts all genes, and even non-zero genes are likely

lower than their true count in the data. Hence, NNMC is poorly

suited to this data type. LRA, a linear method, cannot separate

the exact manifold from external noise, likely due to its inability

to find non-linear directions in the data.

DISCUSSION

Here, we presented MAGIC, an algorithm to alleviate sparsity

and noise due to stochastic mRNA capture and recapitulate

gene-gene interactions in single-cell data. The cost of

sequencing limits our ability to measure large numbers of cells

at depth, ensuring MAGIC’s utility even as scRNA-seq technol-

ogy improves. Further, MAGIC can be used in newer single-

cell technologies such as single-cell ATAC-seq, which suffer
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from similar sparsity and noise. Unlike other imputation algo-

rithms, which simply fill in ‘‘missing values,’’ MAGIC uses diffu-

sion of values between similar cells along an affinity-based graph

structure, to correct the entire data matrix and restore it to its

underlying manifold structure. This diffusion is akin to low-pass

filtering of the graph spectrum. Previously, low-pass filtering

has only been applied to structured data, i.e., data that has a

given temporal or spatial ordering such as images or audio

signals (Buades et al., 2005). Here, we extend this operation

to data without such ordering, by learning a manifold structure

de novo via the diffusion operator and filtering on the manifold

structure. MAGIC is versatile, is able to denoise and correct a

wide range of structures, and is particularly well suited for struc-

tures underlying cell states and phenotypes.

MAGIC assumes cell phenotypes can be approximately

embedded in a substantially lower dimensional structure, which

can be of any shape and even comprised of well-separated com-

ponents. Cells are regulated to reside within the boundaries of a

restricted portion of the state space (i.e., a subspace). Moreover,

gene-gene relationships ensure that these subspaces exist as

lower-dimensional objects relative to the full measurement

space. MAGIC’s key assumption is that such a subspace corre-

sponds to low-frequency trends in the data (technically the

affinity graph representing the data) containing biological signals

of interest, while noise, including dropout, are high frequency.

Thus, low-frequency batch effects or artifacts will not be

removed, and genes behaving in a noisy (high frequency) fashion

may be smoothed out.

The diffusion time parameter determines the extent of smooth-

ing performed byMAGIC.We recommended a diffusion time that

retains biological signals but removes ‘‘intrinsic’’ noise, such as

bursting, as these cannot be distinguished from the large degree

of technical noise in scRNA-seq data. Additionally, the number of

cells affects the frequency of signals in the data. For instance, the

same signal (such as EMT) can be high frequency if only a few

cells are undergoing EMT, but this signal is captured as the

cell number increases. Our data contained only 1% mesen-

chymal cells, but with thousands of cells, we recovered the pro-

cess in detail, including its regulatory process. Thus, while

MAGIC is able to find gross structures using only hundreds of

cells, increasing cell number enables MAGIC to find increasingly

fine structures and more signals in the data.

We evaluated MAGIC on four different scRNA-seq datasets

from different biological systems and measurement technolo-

gies. MAGIC recovers fine phenotypic structure in the data,

including well-separated clusters (Figure 3), bifurcating develop-

mental trajectories (Figure 2), as well as heterogeneous state

transitions (Figure 4). Additionally, MAGIC refines cluster struc-

ture, trajectories, and gene-gene relationships and enables a

myriad of subsequent analysis techniques. In the case of EMT,

MAGIC recovered a complex structure that is not well repre-

sented by a simple trajectory. We applied archetypal analysis

to characterize this complex structure and reveal several previ-

ously unappreciated intermediate states.

We expect MAGIC to be broadly applicable to any single-cell

genomics dataset, boosting the signal and the interpretability of

the data. As with all post-processing, care must be taken when

applying downstream tools. For example, most tools to detect



differentially expressed genes (DEGs) assume sparsity and

would likely over-estimate DEGs post-MAGIC. Thus, we recom-

mend the earth-mover distance (EMD) used in the archetype

analysis (see STAR Methods). We recommend running diffusion

map analysis directly on the raw data (otherwise this could lead

to over smoothing). On the other hand, MAGIC imputed data are

well-suited to visualize trends along the diffusion components.

Most cells no longer have zeros, but instead have very small

values that can be interpreted as the probability a cell is express-

ing the transcript, thus, we recommend treating the very low

values as zero (i.e., the cell is not expressing that transcript).

Finally, the most important application is MAGIC’s ability to

recover gene-gene relationships that are largely obscured in

scRNA-seq data. We validated our approach using: (1) synthetic

data, (2) known relationships, (3) by comparing Zeb1 overexpres-

sion-based EMT inductionwith a TGF-b-induced EMT, and (4) an

extensive systematic validation using ATAC-seq. For network

learning, we developed an adaptation of DREMI (Krishnaswamy

et al., 2014), termed kNN-DREMI, to quantify the strength of

non-linear and noisy gene-gene relationships. Post-MAGIC, we

inferred regulatory relationships and validated predicted targets

of a large-scale regulatory network involving hundreds of TFs

and over 10,000 target genes. Another approach to learn gene-

gene interactions is based on perturbations through the combi-

nation of scRNA-seq with CRISPR (Dixit et al., 2016). However,

these methods require a preselected set of genes to perturb,

often disrupt the system in unintendedways, and require consid-

erable experimental efforts that are not always applicable (e.g.,

the case of clinical tissue). Our approach requires no perturba-

tions or other experimental manipulations and can be applied

to primary tissue and clinical samples. This offers the possibility

of discovering rogue regulatory pathways in cancer, autoimmune

disease, and developmental disorders in a patient-specific

manner, potentially suggesting therapeutic interventions.
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Zeisel, A., Muñoz-Manchado, A.B., Codeluppi, S., Lönnerberg, P., La Manno,
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Weused female HMLEbreast cancer cell lines in this study. The cell lines were not authenticated. HMLE and all derived cell lines used

in this work were cultured in MEGM (Mammary Epithelial Cell Growth Medium) media (Lonza, USA, CC-3051) at 37�C. Cells were

cultured in round tissue culture dishes 10cm in diameter (Corning, USA) and split to a ratio of 1:7 every 2 to 3 days or once they

reached 80% confluence on a plate. All cell dissociations were performed using TrypLE (Ambion, USA) reagent.

METHOD DETAILS

TGF-beta and Zeb1 induction of EMT
EMT was induced in HMLE cells by addition of Recombinant Human TGF-b1 (HEK293 cell derived) (PeproTech, USA 100-21) to a

final concentration of 5ng/ml. EMT was also induced by overexpression of Zeb1 transcription factor. HMLE cells transfected with

FUW plasmid, a tetracycline operator, and minimal CMV promoter were used and Zeb1 gene overexpression was induced by addi-

tion of doxycycline (Sigma, D3447) to a final concentration of 1 mg/ml. All cells under induction were passaged once they reached

80% confluence.

ATAC-seq profiling of TGF-beta induced EMT
HMLE cells were induced with TGF-beta (5 ng/mL, replenished every day) and grown for 8 days. TGF-beta induced HMLE cells were

removed from the cell culture plate with TrypLE treatment, washed twice in 1X PBS buffer, and stained with DAPI dye and

Anti-Human/Mouse CD44 (PE-Cyanine 7) antibody. The stained cells were then analyzed by flow cytometry and the top 3%

(n = 48,000) CD44 positive cells (mesenchymal population) were FACS sorted into a collection tube. FACS sorted cells were first lysed
e1 Cell 174, 716–729.e1–e17, July 26, 2018

mailto:peerd@mskcc.org
https://doi.org/10.1038/nature12772
https://doi.org/10.1016/j.cell.2015.11.013
https://doi.org/10.1126/science.aaa1934
https://doi.org/10.1016/j.cell.2016.07.054
https://github.com/DpeerLab/magic
https://github.com/KrishnaswamyLab/magic
https://github.com/dpeerlab/seqc


with 10 mM Tris-HCl [pH 7.4], 10 mM NaCl, 3 mM MgCl2 and 0.1% IGEPAL CA-630 buffer. The resulting nuclei suspension was

pelleted and fragmented using Tn5 transposase reaction mix (Illumina), purified (QIAGEN) and PCR amplified for sequencing

following the protocol published previously (Buenrostro et al., 2013).

Single-cell RNA-seq profiling of EMT
Single-cell RNA-seq was performed using the inDrops platform (Klein et al., 2015; Zilionis et al., 2017), a droplet microfluidics

based single-cell isolation and mRNA barcoding technology. Briefly, the cell culture flasks containing HMLE cells were treated

with 2 mL TrypLE Express Enzyme (1X) no-phenol-red for 10 min at 37�C, washed three times with 1X PBS containing

0.05% (w/v) BSA, and strained through 40 mm size mesh. The resulting suspension of single-cells was supplemented with

16% (v/v) Optiprep and 0.05% (w/v) BSA and encapsulated into 3 nL droplets together with custom-made DNA barcoding hydro-

gel beads and RT/lysis reagents. The cell encapsulation was set at �30,000 cells per hour using a cell barcoding chip (v2) (Droplet

Genomics), and over 75% of cells entering microfluidics chips were co-encapsulated with one DNA barcoding hydrogel bead.

After loading cells, hydrogel beads and RT/lysis reagents into microfluidic droplets, the composition of a RT reaction under which

cDNA synthesis was carried out was 155 mM KCl, 50 mM NaCl, 11 mM MgCl2, 135 mM Tris-HCl [pH 8.0], 0.5 mM KH2PO4,

0.85 mM Na2HPO4, 0.35% (v/v) Igepal-CA630, 0.02% (v/v) BSA, 4.4% (v/v) Optiprep, 2.4 mM DTT, 0.5 mM dNTPs, 1.3 U/ml

RNAsIN Plus, and 11.4 U/ml SuperScript-III RT enzyme. After cell encapsulation the tube containing the emulsified components

was exposed to 365 nm light to photo-release DNA barcoding primers attached to the hydrogel beads. The RT reaction was

initiated by transferring the tube to 50�C for 1-hour and terminated by incubating for 15 min at 75�C. Post-RT droplets were

chemically broken to release barcoded cDNA, which was then purified and amplified. At the final step, libraries were amplified

using trimmed PE Read 1 primer (PE1):

50-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGA

and indexing PE Read 2 primer (PE2):

50-CAAGCAGAAGACGGCATACGAGAT[index]GTGACTGGAGTTCAGACGTGTGCTCTT

CCGATCT, where [index] encoded one of the following sequences: CGTGAT, ACATCG, GCCTAA, TGGTCA, CACTGT or

ATTGGC). Multiplexing of PCR libraries allowed for the pooling of different samples onto one lane of Illumina HiSeq2500 flow cell

when desired. To prepare the cells for scRNA-seq experiments, they were cultured to 70%confluence and dissociated from the plate

with the addition of 3ml of trypsin for 5 mins at 37�C. After dissociation cells were kept at +4�C at all times in MEGM-complete media.

Two 1x PBS (Ambion, USA) washes were performed on the dissociated cells and cell viability was evaluated using trypan blue

staining prior to scRNA-seq. All inDrops experiments were performed with cell viability exceeding 90%.

Overview of the MAGIC Algorithm
MAGIC begins with an n-by-m count matrix D, representing the observed transcript counts of m genes in n cells and returns an

imputed count matrixDimputed. The expression of each individual cell, a row inD, defines a point in the high-dimensionalmeasurement

space representing the cell’s observed phenotype. The counts in the imputed data matrix Dimputed represent the likely expression

vectors (phenotypes) for each individual cell, based on data diffusion between similar cells.

Key to the success of our graph-based method is a faithful neighborhood of similar cells, based on a good similarity metric.

Given the sparsity of the data, finding the k-nearest neighbors in the raw data using a simple similarity metric is unlikely sufficient

to find cells whose biology is most similar. Therefore, MAGIC builds its affinity matrix in four steps: (i) A data preprocessing step,

which is PCA in the case of scRNA-seq. (ii) Converting distances to affinities using an adaptive Gaussian Kernel, so that similarity

between two cells decreases exponentially with their distance. (iii) Converting the affinity matrix A into a Markov transition

matrix M, representing the probability distribution of transitioning from each cell to every other cell in the data in a single

step. (iv) Data diffusion through exponentiation of M, to filter out similarity based on high frequencies that typically represent

noise and increase the similarity based on strong trends in the data. Once the affinity matrix is constructed, the imputation

step of MAGIC involves sharing information between cells in the resulting neighborhoods through matrix multiplication

Dimputed =Mt � D (Figure 1vi).

Pseudo-code of the MAGIC procedure

MAGICðD; tÞ
D=preprocessðDÞ
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Dist = compute distance matrixðDÞ
A= compute affinity matrixðDistÞ
M= compute markov affinity matrixðAÞ
Dimputed =Mt � D
Drescaled =RescaleðDimputedÞ
Dimputed =Drescaled
END

Using PCA for data preprocessing
MAGIC can be generally applied to any type of high dimensional single cell data to remove noise and clarify structure in the data.

However, before a cell-cell distancematrix is computed, each data-type typically requires specific pre-processing and normalization

steps. Pre-processing is particularly important in the case of scRNA-seq to ensure that distances between cells reflect biology rather

than experimental artifact. We perform two operations on the data which are typically applied to single-cell RNA-sequencing

datasets (Haghverdi et al., 2016; Setty et al., 2016; Shekhar et al., 2016): 1) library size normalization on the cells, and 2) principal

component analysis (PCA) on the genes.

ScRNA-seq data entails substantial cell-to-cell variation in library size (number of observed molecules) which is largely due to

technical variation occurring due to multiple enzymatic steps, such as lysis efficiency, mRNA capture efficiency and the efficiency

of multiple amplification rounds(Grün et al., 2014). For example, the cell barcode associated with each cell can have a substantial

effect on the PCR efficiency and subsequently the number of transcripts in that cell. Therefore, we normalize transcript abundances

(library size), so that each cell will have an equal transcript count.

Given a m � n data matrix D, the normalized data matrix is defined as follows:

Libsize= rowsumðDÞ;
Dnormði; jÞ= Dði; jÞPn
k = 1Dði; kÞ

�medianðLibsizeÞ
This effectively eliminates cell size as a signal in the measuremen
t for the purposes of constructing the affinity matrix and thus the

resulting weighted neighborhood is not biased by cell size.

Second, we apply principal component analysis (PCA) to further increase the robustness and reliability of the constructed affinity

matrix. While dropout renders single cell RNA-seq data extremely noisy, the modularity of gene expression provides redundancy in

the gene dimensions, which can be exploited. Therefore, we perform PCA dimensionality reduction to retain�70% of the variation in

the data, which typically results in 20 to 100 robust dimensions for each cell.

Dpca =pcaðD;0:70Þ
The cell-cell affinity matrix is computed off of these PCA dimen
sions, but imputation is performed on the full data matrix. While

MAGIC still gives reasonable results without preprocessing with PCA, it gives the diffusion a better starting point, resulting in quicker

andmore robust computation. We also note that MAGIC is relatively robust to the number of principle components selected, within a

reasonable range (Figure S3D).
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Constructing MAGIC’s Markov Affinity Matrix
One of the most critical steps in MAGIC is computing the affinity matrix M. M defines the graph structure and cell neighborhoods;

MAGIC can only succeed if the affinity matrix faithfully represents the geometry of the data. We compute a similarity matrix by

applying a kernel function to the distance matrix using the following steps:

1) Computation of a cell-cell distance matrix Dist (Figure 1ii).

2) Computation of the affinity matrix A based on Dist; via an adaptive Gaussian kernel (Figure 1iii).

3) Symmetrization of A using an additive approach

4) Row-stochastic Markov-normalization of A (so each row sums to 1) into Markov matrix M. (Figure 1iv)

We compute a similarity matrix by applying a kernel function to the distance matrix. After data processing (in a technology-depen-

dent manner), MAGIC computes a cell-cell distance matrixDist based on a cell-cell Euclidian distance. Distances are then converted

into an affinity matrix A using a Gaussian kernel function that emphasizes close similarities between cells, as follows

Aði; jÞ= e�ðDistði;jÞs Þ2
Using the Gaussian kernel, similarity between two cells decrease
s double exponentially with their distance. With a negative double

exponential function, distances beyond the standard deviations rapidly drop off to zero and hence the choice ofs, the kernel width, is

a key parameter. If s is too small, the graph becomes disconnected leading to noise and instability. If s is too large, distinct and

distant phenotypes will be collapsed and averaged together, losing resolution and structure in the data. However, cell phenotypic

space is not uniform: a stem cell can be orders of magnitude less frequent than a mature cell type and transitional cell states are

also rare. Therefore, s that would be appropriate for a mature cell type would be far too coarse to capture fine details of the differ-

entiation in progenitor cell types.

Without proper care, denser phenotypes can dominate the imputation. Cells in dense areas have more neighbors and therefore

exert more influence than cells with fewer neighbors. Moreover, dense phenotypes are further reinforced during diffusion, where

dense phenotypes iteratively attract more and more cells toward them and dominate the data (Figures S1A and S1B). MAGIC

uses an adaptive Gaussian kernel to equalize the effective number of neighbors for each cell, thereby diminishing the effect of dif-

ferences in density. Instead of fixing a single value for the kernel width s, we adapt this value for each cell, based on its local density.

Specifically, to equalize the number of neighbors we set the value sðiÞ for each cell i to the distance to its kath nearest neighbor:

sðiÞ=distanceði; neighborði; kaÞÞ
Thus the kernel is wider in sparse areas and smaller in dense area
s. To maximize our sensitivity to recover fine structure, we choose

ka to be as small as possible, such that the graph remains connected.We note thatMAGIC is relatively robust to selection of ka, within

a reasonable range (Figure S3D).

Comparing non-adaptive to the adaptive kernel on the EMT data in Figure S1A, we see that the non-adaptive kernel coarsely cap-

tures only the single strongest trend in the data, whereas the adaptive kernel does not collapse the data, but rather imputes finer

structures. Figure S1B shows this on synthetic data with 3 rotated sinusoidal arms. The adaptive kernel can impute the fine details

of the geometry while the fixed bandwidth kernel averages the sinusoidal features into a line.

To improve computational efficiency and robustness, we ensure sparsity in the resulting affinity matrix A and allow each cell to have

at most k neighbors. Since the standard deviation of the kernel bandwidth is set locally to the distance to the ka-th neighbor we set

k = 3ka to ensure that the kNN graph covers the majority of the Gaussian kernel function. All additional affinities (which are already

close to zero) are set to zero.

Another important factor in MAGIC’s success is the quality of the diffusion process that occurs when the affinity matrix is powered.

A good process would smooth the data in a manner that follows the shape of the underlying manifold. It has been shown (Coifman

and Lafon, 2006b) that to mimic a discretized diffusion that achieves these properties, the affinity matrix must be symmetric and pos-

itive semidefinite, with eigenvalues in the range of zero to one. Negative eigenvalues would simply flip back and forth at each power-

ing, leading to instability. With values greater than one, things would be sensitive to outliers and powering would wildly amplify.

The adaptive kernel results in an asymmetric affinity matrix where Aði; jÞsAðj; iÞ, which we need to symmetrize to achieve these

desired properties for A. We take the additive approach to symmetrization, which averages the affinities, helps pull in outliers and

denoises the data. We construct the symmetric affinity matrix as:

A=A+A
0

The final step is the row-stochastic normalization that renders the
 affinity matrix into a Markov transition matrix M. Each row repre-

sents a probability distribution, whereMði; jÞ is the probability of cell i transitioning to cell j. Each rowmust sum to 1, which we achieve

simply by dividing each entry in A by the sum of row affinities.

Mði; jÞ= Aði; jÞP
kAði; kÞ
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We note that we want a cell’s own observed values to have the hig
hest impact on the imputation of its own values, thus our transition

matrix allows for self-loops and these are the most probable steps in the randomwalk. The distance between a cell and itself is zero,

therefore its weight in the affinity matrix before normalization is 1 (regardless of s) ensuring the measured values in each cell retains a

high weight in its imputation.

An adaptive kernel was previously used to handle the lack of uniformity in biological data in Haghverdi et al. (2016). However, the

key differences between approaches involve time-scale of diffusion. The kernel in Haghverdi et al. (2016) sums up walks of all length

scales after removal of the first eigenvector. By contrast, we prescribe a particular timescale of diffusion, based on convergence so as

not to over-smooth in the context of imputation.

Markov affinity based graph diffusion
Due to sources of technical noise, such as drop out and others, one cannot distinguish between similarity due to biological corre-

spondence versus spurious chance. This is demonstrated using a synthetically generated Swiss roll (with Gaussian noise) presented

in Figure 1. While most nearest-neighbor edges follow the spiral, there are many short cut edges that cut across the spiral (Figure 1ii),

which result in the off-diagonal affinities in Figure 1iii. Consider the following thought experiment, starting with an identical cell,

mimicking scRNA-seq, if we randomly subsample on a small fraction of the transcripts each time, the expression observed across

these cells can appear dissimilar. However, each pair of cells are likely to at least share many neighbors that overlap with each of

them. Whereas spurious edges would have similarity in the raw data, but these would not be supported by shared neighbors.

Thus, exponentiation refines cell affinities, increasing the weight of similarity along axes that follow the data manifold. Following

the exponentiation of M, phenotypically similar cells should have strongly weighted affinities, whereas spurious neighbors are

down-weighted.

RaisingM to the power t results in amatrix where each entryMtði;jÞ represents the probability that a randomwalk of length t starting

at cell i will reach cell j, thus we call t the ‘‘diffusion time.’’

While the powered Markov affinity matrix increases the number of cell neighbors, unlike the effect of increasing k in kNN-imputa-

tion, MAGIC does not bluntly smooth and average over increasingly distant cells. In MAGIC, even as t increases, reweighting also

occurs: dense areas of the data result in more possible paths and thus weights are concentrated in these areas. Importantly, the

closest neighbors remain with the highest probability: (i) The probability of a path is the product of its steps and hence longer paths

are less likely; (ii) There will be many paths that linger in the region, points that are very close to each other will have many paths that

are circular or back and forth that reach each other, including self-loops.

PoweringM has the effect of low-pass filtering the eigenvalues of the Markov transition matrix. Markov matrices have nicely struc-

tured eigenvalues, in the range of [1, 0] with 1 being the highest eigenvalue, and 0 the lowest possible eigenvalue. Much like PCA, the

magnitude of the eigenvalue is an indication of its importance in explaining (non-linear) variability of the associated eigen-dimension.

Thus when a Markov matrix is powered, it decreases the magnitude of all the eigenvalues besides 1, and diminishes the importance

of noise dimensions with near-zero explanatory power. In this process, the signal is filtered out from the noise. Thus, as t increases,

similarity based on high frequency trends (which often correspond to technological noise) decreases and the affinity matrix repre-

sents similarity along lower frequency trends that follow data density. As a result, after the powering ofM, phenotypically similar cells

should have a strong weighted entry, whereas spurious neighbors are down-weighted. In our toy example, there are no off-diagonal

entries in Figure 1v.

Diffusion time for Markov Affinity Matrix
A key parameter in MAGIC is the amount of diffusion, or the power the Markov Affinity Matrix is raised to before the imputation step

Dimputed = Mt � D. We need amethod to determine the optimal value of t for a given dataset, that removes noise and effectively impute

missing values, without over-smoothing the data. We assume that the data lies on a lower dimensional manifold, which is obscured

by dropout and additional sources of noise in the data. The true manifold structure of the data is captured by the top eigenvectors

ofM, whereas the rest of the eigenvectors likely represent noise. The eigenvalues, which are in the range [1,0], are gradually reduced

by exponentiation.

We divide the possible diffusion times into two regimes, an imputation regime and a smoothing regime. The first few steps of diffu-

sion, which we call the imputation regime, diminishes the noise dimensions, bringing these small eigenvalues to zero and removing

most of the noise in the data including dropout. As t increases, cells learn missing values from their neighbors and we rapidly capture

proper relations between cells that are biologically very similar, and were only separated by collection artifacts. Thus, in the impu-

tation regime, the imputed matrix rapidly changes from iteration to iteration.

In the smoothing regime, t is sufficiently large to have recovered the manifold with most of the noise removed. Once diffusion cre-

ates a common support for cells, diffusing further would smooth out lower frequency trends in the data that likely represent real

biology. Therefore, optimal tuning of t relies on quantifying the point where the noise removal turns into signal removal. Since typically

noise is of different frequency than the signal itself (i.e., high- versus low-frequency respectively), we initially expect to see a rapid

change in the data as high-frequency information is being removed. Then, slower change, or convergence ensues. We therefore

expect a regime change in terms of the convergence, or rate of data change, as a function of t. To quantify rate of change,

we use the coefficient of determination (Rsq), between the imputed data at time t and time t-1, and choose a point after this value
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stabilizes. So that our metric is not dominated by few highly expressed genes, we normalize by dividing each gene by its sum. We

then compute, for each t:

Rsq
�
data t; data ðt1Þ�= 1SSE

�
data t; data ðt1Þ��SST�data t; data ðt1Þ�
Where SSE is the sum of squared error and SST is the sum of s
quared total. Since R-squared is a normalized measure, between

0 and 1, we reason that the decay has approximately converged after it has gone below 0.05, i.e., less than 5% change from the

previous t. To make this robust we select the second t after the decay has gone below 0.05 as the optimal t. We note that t is robust

to a range of values of around the optimal t (Figure S3D), further supporting its selection.

In Figure S1Cweplot 1 - R-sq(data_t,data_(t-1)) versus t to inspect how the rate of change decreases and converges.We show that

there are two regimes: an imputation regime, and following convergence, a smoothing regime.

We created a ground truth dataset to test our approach for selecting t. We generated 2000 points on a random tree structure that

was generated using a random walk process where points accumulate adjacent to existing points, with 4 branches and rotated it in

1000 dimensions (Figure S1Di). We then simulated dropout on this tree by subtracting random values sampled from an exponential

distribution to achieve 0%, 2%, 39% and 79% zeros respectively. For each of these noise levels, we ran MAGIC on the dropped out

data for increasing t values (t = 1-8) and computed the convergence, as described in the previous section (Figure S1Dii). As expected,

we find that increasing levels of noise causes convergence to occur at higher values of t. The optimal t is selected at t = 0, t = 3, t = 4

and t = 6 for the increasing noise levels respectively. To determine if these values correspond to actual optimal levels of t, we quantify

the Rsq of the imputed data with the original data before dropout. We reason that the R-squared should be relatively low at low t, then

increase and peak at the optimal t, after which it decreases for larger t. The closest match between the ground truth and imputed data

is indeed corresponds very well with the optimal t for all tested noise levels (Figure S1Diii) and also looks good visually (Figure S1Div).

Moreover, we see that the Rsq remains fairly stable as we increase t beyond the optimal value and the quality of imputation remains

good even as we increase t (Figure S1Diii,iv).

Imputation after graph diffusion
OnceMt is computed,wehave a vector ofweighted neighbors associatedwith eachcell in our data.Wecannowuse this robust neigh-

borhood operator to impute and correct data using the library-size normalized count matrix (before PCA). Thus, while we use PCA to

gain more robustness for the computation of M, the imputation Dimputed =Mt � D is performed at the resolution of individual genes.

The imputation step of MAGIC involves information transfer from cells in the cell neighborhoods and right-multiplying Mt by the

original data matrix. Dimputed =Mt � D (Figure 1vi). When a matrix is applied to the right of the Markov Affinity matrix it is considered

a backward diffusion operator and has the effect of replacing each entry Dði; jÞ that is gene j in cell i,with the weighted average of the

values of the same gene in other cells (weighted by Mt).

Dimputedði; jÞ=
Xn
k = 1

Mtði; kÞ � Dðk; jÞ
This process effectively restores the missing data to the underlyi
ng manifold, which captures the majority of the data.

In the final step of MAGIC, we re-scale the count matrix. The MAGIC process resembles heat diffusion in the graph, which has the

effect of spreading out molecules, but keeping the total sum constant. This means that the average value of each non-zero matrix

entry decreases after imputation. To match the observed expression levels (per cell), we rescale the values so that the max value

for each gene equals the 99th percentile of the original data. Thus cells with high expression of a gene are brought up to similar levels

as the original data and all other values are proportionally scaled up with them.

Drescaledði; jÞ= Dimputedði; jÞ �
percentile

�
D
!

j; :99
�

max
�
D
!

imputed;j

�
MAGIC pulls outliers into the data manifold
MAGIC is able to pull outlier data into the manifold due to the properties of diffusion with an adaptive kernel. As the Markov affinity

matrix M is an asymmetric matrix, the walking probabilities from a particular cell, i.e., M(i, x) are not the same as the walking prob-

abilities to the cell M(x,i). The gene values for a particular cell i, are the weighted averages of other cells based on the i-th row M(i,:).

This row reflects the probability that if you start at cell i, you end up at a cell x in t steps. As the matrix is exponentiated, if cell x is an

outlier cell, then there will not bemany paths from i to x, and thus this entry in theMarkovmatrixM(i,x) gets down-weighted. Therefore

cell i’s values D(i,j) will not veer toward the values of the outlier cell x. On the other hand cell x’s corrected values come from the x-th

row M(x,:), and since cell x is an outlier its nearest neighbors will be on the manifold (and may include cell i). Thus the probability

of x walking to the manifold is very high and thus cell x’s values will become closer to its manifold neighbors and cell x gets brought

into the manifold as t increases. Due to use of the adaptive bandwidth for the Gaussian kernel, cell x is guaranteed to have k nearest-

neighbors (based on our setting the kernel sigma to the distance to the kth neighbor) and those neighbors are likely to be on themani-

fold to aid the pulling in of outliers. See Figures 2, 4, and S1 for examples of denoised manifolds after MAGIC.
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Evaluation of the Synthetic Worm Dataset
To quantitatively evaluate the accuracy of MAGIC’s imputation, we created a validation dataset that was based on bulk transcrip-

tomic data from 206 developmentally synchronized C. elegans young adults, measured at regular time intervals during a 12-hour

developmental time-course using microarrays (Francesconi and Lehner, 2014). Do to the noise prevalent in early microarray exper-

iments, similar to the analysis performed in the original publication of the data, we select only genes that load to the first two PCA

components of the data. This results in a data matrix with 206 worms and 9861 genes.

We down-sampled this data to emulate the sparsity found in scRNA-seq data (Figures S2B and S2C). The log-scaled expression

levels were exponentiated, and then each entry was downsampled using an exponential distribution such that the result had 80%and

90% of the values set to 0. Then the data was log-scaled and normalized based on z-score. We applied MAGIC (with parameters

npca = 20, ka = 3, t = 5) to this synthetically ‘‘dropped out’’ data and then compared between the original and imputed data. We

note that this dataset is particularly challenging as it only contains 206 samples, whereas MAGIC is primarily intended for datasets

consisting of thousands of samples, as is the case for most single cell datasets.

Based on the expression matrix, the imputed data largely matches the original data (Figure S2B). To zoom into finer structure

and illustrate MAGIC’s ability to recover key trends in the data, we select 3 genes (C27A7.6, ERD2 and C53D5.2) based on their

non-monotonic developmental time trends and compare the original and imputed shapes for each of these trends. For each

gene, we find close concordance in the developmental trend between the original and imputed data (Figure S2B).

We quantitatively evaluate MAGIC’s accuracy by directly comparing the original and imputed values. At dropout of 90%, the R2

increases from 7% to 43% and for 80% dropout, the R2 increases from 13% to 53%. The agreement between the original and

imputed data is even higher in the case of gene-gene correlations than that of the univariate case. For example, the agreement in

gene-gene correlations between the original data and data with 90% of the values dropped out is 0.12. MAGIC recovers most of

the gene-gene correlations so that after imputation we have a R2 of 0.65. For 80% of the values at zero, MAGIC improves from

0.35 to 0.78.

Validation Using a Synthetic EMT Dataset
We used the MAGIC-imputed count matrix of the EMT data as the ‘‘ground truth’’ of a synthetically created dataset and then re-

created synthetic dropout. Starting with data from 7523 HMLE cells 8-10 days after TGFB treatment, we first imputed the data

with MAGIC (npca = 20, ka = 10, t = 6) and then we induce dropout by down-sampling using an exponential distribution such that

0%, 60%, 80%and 90%of the values are set to 0.We then re-imputed the data usingMAGIC.We show thatMAGIC can also capture

multivariate relations effectively–the agreement between the original and imputed data is even higher in the case of gene-gene cor-

relations than that of the univariate case (Figure S3Aii).

With 90% zeros, the R2 between the original data and the down-sampled data is brought down to 0.04 and MAGIC corrects the

data so that the R2 rises back to 0.7 (Figure S3Ai). We see that with 80% zeros, we have R2 of 0.09 after dropout, which is corrected to

0.81 after imputation. An important feature of MAGIC is that it is particularly good at capturing the ‘‘shape’’ of the data (Figure S3B).

We note that the imputed data is less noisy and more accurately adheres to a low dimensional manifold. However, MAGICmay addi-

tionally remove some stochastic biological variation, as it removes unstructured, high frequency variation.

Robustness of MAGIC to Subsampling
An important feature of any algorithm is its robustness to input parameters and subsampling of the data (in this case, cells). First, we

consider the sensitivity of MAGIC to subsampling of cells. We start with the 7523 cells collected in the EMT HMLE data and consider

the imputation result on the full data as the ground truth. For this analysis, we only consider the 9,571 genes that are expressed in

more than 250 cells, to ensure these genes will likely remain present in each subsample. More generally, we expect the quality of the

imputation to depend on gene expression, both the absolute expression level of a gene when it is observed, as well as how frequently

(in how many cells) it is observed. To take this into account, we divide remaining genes into two groups, based on the mean log

expression in the raw data, highly expressed genes (3,190 genes) and lowly expressed genes (6,381 genes). We subsampled cells

to different degrees, uniformly at random (100 iterations each). For each subsampled dataset, we remove any genes that have no

expression and impute the remaining genes using MAGIC (for the same set of parameters). For each imputed matrix, we compute

the correlation-squared R2, per entry against the ground truth (full dataset). Figure S3C shows the mean correlation-squared across

100 iterations with 1-standard deviation represented by the error bars. MAGIC is highly robust to subsampling of cells across both

groups of genes. Even for a subsample with only 1000 cells, we obtain R2 > 0.94 among highly expressed genes and R2 > 0.61 among

lowly expressed genes (with standard deviation < 0.01 for both).

Since our main interest lies in the quality of imputed cells, for each imputed cell (represented as a vector of gene counts) we

compute the correlation-squared R2, against the ground truth for the same cell and average the result over all cells. This ‘‘cell-centric’’

view of the data (Figure S3C,middle column) produces the same results and quality as the correlation observed across the full matrix.

As demonstrated in previous analysis, MAGIC learns a lower dimensional manifold where cells reside and inferred cells adhere to this

learned structure.

However, a ‘‘gene centric’’ view of each imputed gene (represented as a vector of cells), gives slightly different results (Figure S3C,

right). While we have good agreement when large numbers of cells are subsampled, e.g., when sampling 5000 cells averaged over all

genes, R2 > 0.89 (std. < 0.01) on the set of highly expressed genes and R2 > 0.78 (std. < 0.01) for the lowly expressed genes. This
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correspondence declines linearly with the number of cells subsampled, so that with only 1000 cells, we find R2 > 0.49 (std. < 0.01) on

the set of highly expressed genes and > 0.29 (std. < 0.01) for the lowly expressed genes. Most genes are only observed in a fraction of

cells, thus as the number of cells decline, so does the number of observations we have for any given gene. We find that we are suc-

cessful at inferring genes that have high loadings on the top PCA (or diffusion) components. That is, some genes behave in a more

structured manner, and MAGIC is good at inferring these genes. But, not all genes exhibit such structured expression. Importantly,

we have the ability to predict in advance (based on their PCA loadings), which genes we are likely able to impute well.

Robustness of MAGIC to Parameters
MAGIC requires three key input parameters, ka (to set the adaptive kernel to the distance of the kth nearest neighbor), t (the number of

times M is powered) and npca (the number of PCA components used to construct the affinity matrix). While we proposed criteria to

guide the choice of these parameters, we also analyze MAGIC’s robustness to their exact values.

MAGIC uses an adaptive kernel for cell-cell affinity computation, where s, the width of the Gaussian kernel at each point is set

to the distance to its kth nearest neighbor (denoted ka (‘‘adaptive k’’)). We generally pick ka such that it is the smallest value that still

results in a connected graph. We test MAGIC’s robustness to ka, applying a range of ka values to the EMT data, with t set to 6 and

npca to 20. To avoid the possibility of correlation being dominated by a small number highly expressed genes, we use z-score values

for each gene in the imputed matrix. Then, we compute the R2 of the post-imputation data for each pair of ka settings (Figure S3D).

MAGIC is highly robust for a suitable range of ka values (between 10-30), the average R2 value for ka = 10-30 is 0.95 (std 0.05).

However, a very large value of ka (60-120) over-smooths the graph resulting in a weaker correlation score with other settings

of ka (mean 0.56, std 0.27).

Next, we consider robustness of MAGIC to the diffusion time (t), by applying MAGIC to a range of values, keeping other variables

fixed (npca = 20, ka = 10, Figures S3D and S3E). Again, we find that MAGIC is robust to a suitable range of t (6 – 24). In particular, the

average R2 value for t = 6-24 is 0.90 with a standard deviation of 0.10. However, a very large value of t (64-128) over-smooths the

graph resulting in a weaker correlation. Moreover, we show that our criteria for selecting the optimal diffusion time t, is robust.

The Optimal t was computed on 20 subsamples of 50% of the EMT data, resulting in tight reproducibility (Figure S3Eii).

Lastly, we consider robustness of MAGIC to the number of PCA (npca) components used to build the affinity matrix. We compute

MAGIC based on a range of values of npca, holding other parameters fixed (ka = 10, t = 6). As shown in Figure S3D, we find that

MAGIC is highly robust to the choice of npca. In particular, for npca > = 16, the average R2 is 0.94 with a std of 0.05. However, as

expected, since few number of PCA components do not capture enough variance in the data, we observe low correlation between

small and high npca. Overall we conclude that MAGIC is robust to a wide range of parameters, around the level that our heuristics

for ka, t and npca provide. Thus changes in these parameters should have minimal effect on imputed results.

Recovering cluster structure with MAGIC
While MAGIC recovers structure by diffusing values between neighboring cells, values should not exchange between different clus-

ters. Cluster structure should therefore be maintained even after running MAGIC. To show this we computed a diffusion map on the

original data and on the data after MAGIC. Figure 3B shows the first two diffusion components of the original data (i) and data after

MAGIC (ii) colored by Phenograph clustering on the original data (k = 50). While the diffusion map after MAGIC appears to have less

noise, the two diffusion maps show the same cluster structure.

Next, to investigate the ability of MAGIC to preserve and recover cluster structure in the face of dropout, we performed manual

dropout on a dataset of 3005 mouse neurons (Zeisel et al., 2015). This dataset has relatively high numbers of molecules (�19%

non zero values) and is therefor particularly suited for downsampling. We downsampled up to 90% zeros by subtracting random

values sampled from an exponential distribution. We first performed clustering on the original data (after library size correction

and log transformation with pseudocount 0.1) using Phenograph (k = 50). We then downsampled to different levels of dropout

and for each level either ran MAGIC (t = 6, npca = 20, k = 30, ka = 10) and clustered using Phenograph, or directly ran Phenograph

on the down-sampled data. The clustering solutions before and after MAGIC were compared using the Rand index, which measures

the correspondence between the two clustering solutions. The Rand index gives a value of between 0 and 1, with a value of 1 signi-

fying a perfect correspondence. Figure 3C shows the Rand index, for Phenograph performed without and with MAGIC, as a function

of the dropout level. Phenograph with MAGIC performs significantly better after dropout (after at least 40% zeros). At 0%–10%

dropout the original data performs slightly better (in clustering correspondence to the original data), we note however, that even

the original data has substantial drop-out and thus MAGIC is likely finding additional structure in the data.

MAGIC corrects ambient RNA and mixed barcodes
MAGIC removes high-frequency signal, which typically relates to sources of noise. In addition to correcting for drop-out, MAGIC can

correct for additional sources of error in scRNA-seq, including ambient RNA in themedia, barcode swapping between cells and other

spurious sources of molecules. To illustrate this ability, we generate a test case with artificially contaminated cells, by assigning

molecules to the wrong cell.

First, we generated a Gaussian mixture in high dimensions (2000 cells in 1000 dimensions) consisting of two clusters (1000 cells

each) (Figure 3D, original). We then randomly select pairs of cells (one from each cluster) and a random gene, and swap their values,

for some fraction of the data (Figure 3D, 10%and 30%corruption). Finally, we imputed the data withMAGIC (ka = 10, t = 4, npca = 10)
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(Figure 3D, After MAGIC). Figure 3D shows that while corruption creates significant noise, i.e., cells in the wrong clusters, MAGIC is

able to correct this; 98% recovery for 10% corruption and 81% recovery for 30% corruption.

Creation of Synthetic Datasets
Wecreated several synthetic datasets to demonstrate the effects of dropout, noise and recovery after application ofMAGIC.We have

already described datasets created for measuring the ability of MAGIC to recover ground truth, i.e., the artificially dropped-out worm

and EMT datasets. Here we describe datasets used to quantify MAGIC’s ability to correct contamination, denoise data along non-

linear manifolds and to validate our criteria for the optimal diffusion time t.

Creation of corruption dataset
To illustrate the ability of MAGIC to correct for contamination in the transcriptome (potentially due to ambient mRNA or other errors),

we generate a test case with artificially contaminated cells. First, we generated a Gaussian mixture in high dimensions (2000 cells in

1000 dimensions) consisting of two clusters (1000 cells each) (Figure 3D, original). We then randomly selected a fraction of the matrix

entries and switched their values between the two clusters (Figure 3D, 10% and 30% corruption) in order to evaluate MAGIC’s ability

to recover the true entries.

Creation of tree structure dataset
To test whether our method for choosing the optimal t does indeed find an optimal t we created a ground truth dataset. We generated

2000 points on a random tree structure that was generated using a randomwalk process (diffusion-limited aggregation) where points

accumulate adjacent to existing points, with 4 branches and rotated it in 1000 dimensions (Figure S1Di). We then simulated dropout

on this tree by subtracting random values sampled from an exponential distribution to achieve 0%, 2%, 39% and 79% zeros respec-

tively (Figure S1Dii,iv).

Creation of Swiss roll datasets
To illustrate the MAGIC algorithm, we generated a Swiss roll dataset. A Swiss roll is a prototypical example of a higher dimensional

dataset with a continuous lower dimensional manifold. We first generated a 2-dimensional Swiss roll sampled at 1000 points. The

data is embedded in 10 dimensions by random rotation via a randomly generated QR transformation. Then these 10 dimensions

are extended to 100 dimensions by replicating each dimension 10 times with additional Gaussian noise. We added Gaussian noise

with mean 0 and standard deviation 2.5. The first two PCA components of this data, illustrating the Swiss roll shape is shown in

Figure 1Aii.

For Figure S7C, the Swiss roll consisted of 2000 points. A Gaussian noise of mean 0 and standard deviation 0.35 was added to

create a noisy Swiss roll. This was then embedded into 5000 dimensions via QR transformation. The first two PCA components

of this data is shown in Figure S7C. In Figure S7D, we added dropout by subtracting values per data-point from an exponential dis-

tribution with in the inner part of the Swiss Roll and decreasing to toward the outer part of the spiral.

MAGIC compared to Diffusion Maps
Diffusion Maps were developed as a nonlinear dimensionality reduction technique (a type of Kernel PCA) to find major (non-linear)

directions of variation in high dimensional datasets by Coifman and Lafon (2006a). The main idea behind diffusion maps is that so-

lutions of the heat equation over a manifold provide global representation of its intrinsic dimensions. When applied in a data analysis

setting, this corresponds to finding the eigen-decomposition of a diffusion operator, i.e., a Markov-normalized affinity matrix that

defines similarity between data points along a manifold. This operator is exponentiated to achieve diffusion, i.e., longer range

connectivity between data points via global random walks over the data. Finally, this operator is eigendecomposed to find diffusion

components (a nonlinear analog to PC components) (Coifman and Lafon, 2006a). Diffusion maps are primarily used provide an

embedding of the data in a new coordinate system in which Euclidean distances are equivalent to diffusion distances.

Recent applications in biology have used the fact that diffusion components encode major non-linear trends in the data to

find ‘‘pseudotime trends’’ that often correspond to progression of development (Haghverdi et al., 2015, 2016; Setty et al., 2016).

Therefore, these components have value even when observed individually, rather than as coordinates of an embedded space.

Diffusion maps are not designed to recover the original data features and do not perform manifold denoising or imputation (i.e.,

correct the features to the original high-dimensional representation of a clean manifold), but rather they find a separate representa-

tion, typically low dimensional, of trends in the data. Smoothing has been used to recover gene trends along individual diffusion com-

ponents, but this is not equivalent to recovering the data taking all components into account (See Figure 7, sky blue).

MAGIC, by contrast, attempts to restore and correct the data (gene measurements) itself. To achieve this, MAGIC considers the

propagation of information via a data diffusion process directly applied to the data. It recovers each gene in each cell as a weighted

average of its neighbors based on awalking probability, i.e., each cell X gets values from other cells Y proportional to the probability of

a randomwalk proceeding fromX to Y. In essence this restores outlier data to themanifold and clarifiesmanifold structure of the data.

The mathematical foundation for our method is rooted in the emerging field of graph signal processing (Shuman et al., 2013), which

considers the spectrum of a graph as a Graph Fourier Transform, and applies filters to this spectrum. By applying the diffusion

operator directly to the data, we essentially achieve a low pass filter on the data. Fourier transforms are traditionally applied in image
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processing or audio processingwhere there is time-or-space order, also called structure to the data. Our contribution generalizes this

approach to unstructured data.

MAGIC versus Pseudotime-based Imputation
We compare MAGIC to pseudotime analysis based on diffusion components (Figure 7). Pseudo-time refers to methods that derive

one dimensional orderings of cells in data, whichmay reflect the order of differentiation or other types of cellular progression (Bendall

et al., 2014; Haghverdi et al., 2016; Setty et al., 2016). Such methods have had recent success in inferring certain types of trends in

data.We furthermotivate the necessity ofMAGIC by showing their inability to correctly infer gene-interactions or even developmental

trends in sparse single-cell RNA-sequencing data that has more complex structure.

For this purpose, we used the first two diffusion components, as in (Haghverdi et al., 2016), which captures the main non-linear

progressions in the data (Coifman and Lafon, 2006a), as well as known markers of the transition, CD34 for bone marrow and VIM

for EMT. Just as in MAGIC, the diffusion operator is computed using distances computed off of 20 principle component dimensions.

On each pseudo-time trajectory, we perform a sliding window convolution using aGaussian kernel with bandwidth set by Silverman’s

rule of thumb (Silverman, 1986) (to the standard deviation of the data) to impute averaged values of particular genes in the data

(Figure 7, sky blue).

Compared to MAGIC (2nd column, green), the trends inferred by pseudotime-based imputation are noisy, fluctuating, and do not

corroborate the known biology. For instance, ZEB and SNAIL are both associated with themesenchymal state and should go up with

EMTprogression, and yet their trends still show fluctuation and downward inflections. Thus, we conclude thatMAGIC, with its implicit

consideration of all diffusion components simultaneously (as contained in the diffusion operator itself), and unique treatment of each

cell, is unique in its ability to restore of gene-gene relationships and behavioral trends in single-cell RNA-sequencing data.

Comparison of MAGIC to Other Methods
We compare MAGIC to current state-of-the-art methods to fill in missing data and reduce noise, SVD-based low-rank data approx-

imation (LRA) (Achlioptas and McSherry, 2007) and Nuclear-Norm-based Matrix Completion (NNMC) (Candes and Recht, 2012).

Both methods have a low-rank assumption, i.e., like MAGIC, they assume that the intrinsic dimensionality of the data is much lower

than the measurement space and utilize a singular value decomposition (SVD) of the data matrix. The singular-value decomposition

of the data matrix, is a factorization of the form D=UEV� where U contains the left singular vectors of D, V contains the right singular

vectors of D, and E contains the singular values along the diagonal. Note, PCA also uses SVD for its dimensionality reduction.

The two methods we compare against MAGIC work as follows:

1) SVD-based low-rank data approximation (LRA) (Achlioptas and McSherry, 2007): This method for derives a low-rank

approximation of a higher rank data matrix. After performing SVD, a lower rank version of D, Dlow is created by taking only

the first k columns ofU and E and only the first k rows of V�. This is because the first singular vectors, like PCA vectors, explain

a larger variation in the data, while the subsequent vectors may correspond to noise. Therefore, the elimination of the lower

singular vectors effectively de-noises the data, albeit, only using linear directions of variation.

2) Nuclear-Norm-based Matrix Completion (NNMC) (Candes and Recht, 2012): This technique is designed to recover missing

values in data matrices, which could potentially address the dropout issue. MNMC restores ‘‘missing values’’ so that the

rank of the data matrix is not increased, as computed through a linear programming optimization. However, since minimizing

the rank of a matrix is a non-convex optimization, they optimize a convex proxy for rank, which is the nuclear norm (sum of all

singular values) of a matrix.

First, we compared the performance of the three techniques on a two-dimensional Swiss roll (See Figure S7). We added Gaussian

noise along the Swiss roll (Figure S7C), and then embedded the Swiss roll into 5000 dimensions via a random QR rotation matrix.

Results show that only MAGIC is able to denoise even relatively simple Gaussian noise. While LRA can take off noise from outside

the plane of the Swiss roll (by decreasing rank and essentially discarding noise dimensions), NNMC seems incapable of even that.

NNMC is only concerned with retaining rank, and so it can fill in data arbitrarily so as not to increase rank.

The real advantage of MAGIC becomes clear when we add dropout, typical of scRNA-seq data (Figure S7D). Dropout was added

to create 80% zeros, creating regions of different densities in the data. We find that only MAGIC is able to correct for dropout and

restore the Swiss Roll. The ‘‘recovered’’ LRA looks identical to the noisy, dropped out LRA, and the ‘‘recovered’’ NNMC looks

cloud-like. We conclude that MAGIC is uniquely well suited to handle the dropout rampant in scRNA-seq data.

We also compared all 3 techniques on 8 known biological relationships in our data (Figures 7A and 7B). In each case, NNMC per-

forms poorly, generally only imputing a single linear shape. Occasionally the direction of correlation is also incorrect in NNMC. For,

instance, the Cdh1 versus Cdh2 (E-cadherin versus N-cadherin) edge shown in Figure S7A, is known to have a negative relationship.

However, NMMC imputes a positive correlation between these genes. Additionally, NMMC finds no relationship between the well-

known negative correlation between canonical EMTmarkers E-cadherin and Vimentin. A possible explanation for this poor recovery

is that NMMC ‘‘trusts’’ non-zero values and only attempts to impute possibly missing zero values. Whereas in scRNA-seq dropout of

molecules impacts all genes and even non-zero genes are likely lower than their true count in the data. Hence NMMC is poorly suited

to this data type.
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LRA performs slightly better, as the most significant components of the SVD do usually contain the hyperplanes of the data

manifold. However, it cannot separate the exact manifold from external noise, likely due to its inability to find non-linear directions

in the data. Therefore, it cannot impute the fine-grained structure that MAGIC imputes as shown throughout Figure S7. For instance,

in Figure S7Ai we see that MAGIC is the only method that is able to impute the details of the sparser branches, which contain the

mesenchymal and apoptotic cells, while the other methods only impute a cloud shape. In the Bonemarrow data shown in Figure S7B,

we see that MAGIC is the only method that is able to clarify the developmental trajectory seen in Figure S7Bi into an arc with myeloid

cells developing to one arm and erythroid cells developing in the other.

QUANTIFICATION AND STATISTICAL ANALYSIS

Archetype analysis using PCHA
Recently, archetypal analysis (Cutler and Breiman, 1994) has been proposed as a method for characterizing high dimensional bio-

logical data (Korem et al., 2015; Shoval et al., 2012). Under this model, the cellular phenotypic space is fit to a low dimensional convex

polytope. While the actual phenotypic space is non-convex, we search for a low-dimensional convex polytope that closely approx-

imates the data. The corners of this polytope represent extreme phenotypic states at the data extrema, with other points being

convex combinations of these extrema.

While archetypal analysis has previously been applied to single cell data that was not imputed (Korem et al., 2015), we find that

MAGIC is an essential step into finding meaningful archetypes (Figures S4B–S4D). Before MAGIC the data is dominated by noise

and as a result there are no apparent extreme states. After MAGIC (Figure 4) we can observe the shape of the phenotypic landscape

and clearly see ‘‘corners’’ or extreme states in the data (compare to Figure S4B). To find the archetypes of our EMT data we use the

Principal Convex Hull Analysis (PCHA) method (Mørup and Hansen, 2012) on the PCA projection of the imputed data, which scales

efficiently with the number of cells and has previously been used successfully in single cell data analysis (Korem et al., 2015).

To make the archetypal analysis more robust, the dimensionality of the data is reduced via PCA (Korem et al., 2015; Shoval et al.,

2012). Since volume increases exponentially with the dimension, the number of data points needed to robustly approximate the poly-

tope also grows exponentially with the dimension. We observe that 90% of the variance of the imputed data is explained by 10 PC

components, allowing us to robustly estimate the polytope in a dramatically reduced dimension that still captures the dominant

dimensions of variation. Moreover, since PCA is a linear transformation, the convex hull of the data in PCA-dimensions is a subset

of the convex hull of the original data and therefore the archetypes obtained are indeed extreme points of the original data.

We use the first 10 PC components for the PCHA method, and search for 10 archetypes, whose convex-hull closely approximate

the data. To ensure a compact and concise shape that best approximates the data, the archetypesmust exist in the convex hull of the

data and in turn the convex hull of the archetypes must closely approximate the data. Each archetype is a specific convex combi-

nation of the data points. In particular, let X = fx1; x2; .; xNg; xi ˛Rm be the data points, we define an archetype zj =
PN

i = 1cijxi,

where 0%cij%1;
P

icij = 1. In matrix form, for p archetypes Z = XC, where X˛Rm3N is the data matrix, C ˛RN3p is the coefficient

matrix andZ ˛Rm3p is thematrix of archetypes. The constraints
P

icij = 1 and 0%cij%1 imply that each archetype is within the convex

hull of the data points.

The goal in archetypal analysis is to identify an optimal set of archetypes so that the convex combination of the archetypes can re-

approximate thedata points.Mathematically, bX =
Pp

j =1sjizj, where 0%sji%1;
P

jsji = 1, so that bX best approximates theoriginal data

points. Inmatrix notation, bX = ZS = XCS; where S ˛Rp3N is thematrix of coordinates sji. This second constraint implies that the data

can bewell approximated by a convex combination of the archetypes, which in turn implies that the archetypesmust lie on or near the

convex hull of the data; hence making them the extreme states of the data. The PCHAmethod minimizes the difference between the

original data X and the estimated data bX with the objective function defined as kX � bX k 2

2 = kX � XCS k 2
2, where the minimum is ob-

tained via a projective gradient descent scheme (Mørup and Hansen, 2012).

To summarize, the computation of the archetypes: Let X ˛ RN 3 mbe the imputed data matrix, where n is the number of cells andm

is the number of genes.

1. ½U; Y �= pcaðXÞ; where U ˛ Rm 3 10 is the principal component coefficient matrix and Y˛ RN 3 10 is the matrix of the principal

component scores (projection of X onto U). We note that the number of principle components, 10 in the EMT dataset, is data

dependent.

2. K = pchaðY ; 10Þ, where K ˛ R10 3 10 are the archetypes on the PCA projection.

3. Kfull = K 3 U
0
, where Kfull ˛ R10 3 m is the estimated set of archetypes on the original phenotypic space.
Differential expression of the archetypes
An archetype is a weighted sum of cells, which allows us to construct archetypal-neighborhoods, consisting of cells most similar to

the archetype. The neighborhoods are constructed by assigning cells to their nearest archetype based on the diffusion distance, as

long as this distance is within a bounded proximity from the archetype. Diffusion distance is defined as the Euclidean distance on the
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diffusion map representation of the data, i.e., using diffusion components as a coordinate system (Nadler et al., 2006), denoted by

DMðtÞ; which is constructed as follows:

1. ½P; Q; R� = eigðMÞ, whereM ˛RN 3 Nis the same Markov matrix as for MAGIC (constructed as described above) and P; Q; R

are the matrices of the right eigenvectors, eigenvalues and left eigenvectors of M respectively

2. DMðtÞ=P 3 Qt; We used the same value for t as we used for imputation ðt = 6Þ.
3. Then, the diffusion distance between any two points xi and xj for diffusion time t is computed as Ddiff ðt; xi; xjÞ =

kDMðt; xiÞ � DMðt; xjÞ k 2
:

To assign similar cells to each archetype we define a neighborhood of radius ri for each archetype zi asN zi = fxj : Ddiff ðt; zi;xjÞ%ri;

for all jg, where ri = 1=2min
jsi

ðDdiff ðt; zi; zjÞÞ. This choice of the radius guarantees that the neighborhoods span a similar range on the

manifold for each archetype.

These archetypal neighborhoods now enable us to characterize the gene expression profiles as distributions around each arche-

type and compare these distributions between the archetypes. For quantifying differences between distributions, we use earth

mover’s distance (EMD) (Levina and Bickel, 2001), a nonparametric measure of the distance between two distributions that quantifies

the flow required to morph one distribution to another. It is defined as the L1 norm of the cumulative density functions, DEMD =

kCDF1 � CDF2 k 1; and has successfully been used to quantify gene expression differences in single cell data (Levine et al., 2015).

We find the genes whose expression maximally distinguishes each archetype against background gene expression. For each

archetype, the background is constructed using all cells that are not a member of the archetypal neighborhood, excluding apoptotic

cells. However, due to density differences in the data, simply combining the remaining cells over-represents some archetypes and

underrepresents others. Therefore, we create a background distribution by randomly subsampling an equal number of cells from

each archetypal neighborhood. For each archetype, we compute the EMD to background for each gene. To ensure robustness,

we perform this subsampling and EMD computation 100 times and use the average score for each gene. Finally, we select the genes

that have the largest average EMD distance to background as distinguishing features for each archetype. Note that MAGIC is

absolutely essential in getting distinct differentially expressed genes between the different archetypes, compare Figures 4D

and 4E (differential expressed genes after MAGIC) with Figures S4C and S4D (same analysis before MAGIC).

Robustness analysis of archetypes
To determine whether the 10 archetypes that we found are robust, we randomly downsampled the EMT data to 90%of the 7523 cells

100 times and reran the archetype analysis (with the same parameters) each time. Each of 100 subsamples resulted in 10 archetypes.

Toquantify the robustnessbetweensubsamples, for eacharchetypewecomputed thePearsoncorrelationwith all 99 replicates of that

archetype. Figure S4A shows a 3D PCA plot of the EMT data, with the archetypes from each replicate plotted. Each color represents

one archetype, and themultiple points per color show the 100 replicates per archetype. Each archetype is annotatedwith the average

Pearson correlation betweenpairs of replicates. The Pearson correlationwas> 0.95 for 9/10 archetypes and closer to 1 inmost cases.

Computation of kNN-DREMI
To quantify relationships, we adapt DREMI (conditional-Density Resampled Estimate of Mutual Information) (Krishnaswamy et al.,

2014) to scRNA-seq data. The main idea underlying DREMI is the use of conditional density instead of joint density, thus capturing

the functional relationship between two genes across their entire dynamic range. The key change in kNN-DREMI is the replacement

of the heat diffusion based kernel-density estimator from Botev et al. (2010) by a k-nearest neighbor based density estimator (Sri-

charan et al., 2012), which has been shown to be an effective method for sparse and high dimensional datasets. This involves a local

computation involving only the k-nearest neighbors for each cell, which scales linearly with the number of cells. Moreover, while den-

sity estimation becomes prohibitively slow at higher dimensions and requires exponentially more data for stable estimates (Scott,

2015), a neighbor-graph has no dimensions and is only dependent on a good affinity matrix. The steps of kNN-DREMI include.

1. Kernel density estimation to compute pðx; yÞ for two variables x and y.

2. Coarse-graining of KDE into larger discrete bins for entropy computation.

3. Normalization of the coarse-grained KDE to compute pðyjxÞ = pðx;yÞ=pðxÞ.
4. Entropy and mutual information computation based on the discrete bins.

1) Computation of joint density using kNN

In the first step, the joint density is computed using k-nearest neighbors on a fine grid of points (Figure 5B). To be able to capture fine,

non-parametric structures in the data, we partition the 2-dimensional space into a fine grid of points uniformly spaced points (gray

dots). For each grid point, we compute its density based on the distance to its kth nearest neighbor, where neighbors are the actual

data points (black dots). Figure 5B shows two data points colored by density based on their distance to the nearest neighboring data-

point (k = 1). More generally, the density at each grid point is calculated by:

k

N � Vðr;dÞ
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Where N is the total number of data-points and r is set to the dista
nce to the kth neighbor. Then the volume of a d-dimensional ball of

radius r is given by:

Vðr;dÞ= pd=2

G
�
d
2
+ 1
� � rd
kNN-based density estimation has been shown to be particularl
y robust approach to handle sparse data (Sricharan et al., 2012).

Since we are computing pairwise relationships, d = 2 in this context. We set k = 10 for robustness against outliers and construct

a grid of 60x60 points to capture fine structure in the data.

2) Coarse graining the density estimate

While the KDE is computed on a fine-grid, to achieve robustness, the discrete mutual information is computed on a coarser grid (Fig-

ure 5Bii). While density estimate is intended to smooth and fill in gaps in the data requiring a finer scale of resolution, having a coarser-

scale resolution for mutual information renders the mutual information more robust. A coarse grid can identify clear relationships and

is less dependent on noise and irregularities in the partitions. Therefore, we accumulate the density estimates for each grid point into

a coarser 20x20 grid on which to compute entropy.

3) Computation of conditional density using a kNN-method

To capture the functional relationship between two genes over their full dynamics range, we use the conditional density rather than

joint density. For instance, in Figure 5Di we see that the left half of the relationship is much more densely sampled than the right half

and that the joint density (shown in Figure 5Diii) only picks up signal in the left half. By contrast, the conditional density estimate

(shown in Figure 5Div) picks up the relationship in both halves revealing that EZH2 peaks at intermediate levels of Vimentin and sub-

sequently declines.

To compute the conditional density estimate, we simply column-normalize the joint density estimate, i.e., divide the joint density

estimate by the marginal. More formally, for joint density estimate on a n � nmatrix G, to condition on the columns, divide each entry

by the column-total:

Gði; jÞ= Gði; jÞP
kGði; kÞ
We call the resulting matrix (e.g., Figure 5Div) DREVI (Density re
weighted visualization), essentially producing a 20x20 image that

captures the shape of the gene-gene relationship, which we can visualize, vectorize and apply curve fitting to this representation

of the relationship.

4) Computation of Mutual Information from conditional density

The final step of kNN-DREMI is the computation of entropy and mutual information using the coarse-grained conditional density

estimate from step 3. In the discrete case where X and Y can take on values between 1 andm, mutual information between two vari-

ables X and Y is generally computed as the difference between the entropy of Y, and its conditional entropy after conditioning on X:

IðX : YÞ=HðYÞ � HðY jXÞ
Here H is the Shannon Entropy is:
HðYÞ=
Xm
y = 1

�pðyÞlogðpðyjxÞÞ
Conditional Shannon Entropy is given by:
HðY jXÞ=
X
x

pðxÞ
X
y

� pðyjxÞlogðpðyjxÞÞ
After computation of the coarse-grained conditional density estim
ates, we simply compute themutual information using the equation

above. Effectively, this simply added another level of conditioning to the original formulation of mutual information:

DREMIðX : YÞ= HðY jXÞ � HðY jX jXÞ
We illustrate this computation using the relationship between VIM
 and EZH2, revealing a clear non-linear relationship between the

two variables (Figure 5D). kNN-based kernel density estimation is computed on a fine grid (Figure 5Dii), which is aggregated into

a coarser grid (Figure 5Diii) and converted to a conditional density estimate by column normalization. The resulting DREVI image

(Figure 5Div) provides us with a non-parametric, vectorized representation of the gene-gene relationship, enabling quantification

and comparison between different gene pairs. Finally the kNN-DREMI score is the mutual information computed on the conditional

density estimate.

MAGIC substantially increases our ability to detect gene-gene relationships, whereas the pre-MAGIC DREMI range is between

0-0.4, after MAGIC, this range increases to 0-1.7 (Figure S5B), with the mode shifting from 0 to 0.2. We note that there is almost
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no correlation between the DREMI scores before and after MAGIC (Figure S5C) and moreover, we find gene pairs with very high-

DREMI after MAGIC, across the entire range of DREMI scores before MAGIC. We see that if the correlation coefficient is high

then DREMI will also be high. However, there are additional relationships (highlighted in the box in Figure S5D) that only DREMI

identifies (Figures S5E and S5F).

Robustness analysis of kNN-DREMI
kNN-DREMI requires three parameters to compute the DREMI score between two gene expression vectors; the number of neighbors

for kNN density estimation (k), the size of the fine-grained grid on which kNN density is computed (nGrid—square root of grid size),

and the number of bins in the coarse grid (nBin). We choose k such that it is small enough to focus on local density and large enough to

ensure robustness, setting k = 10. nBin should be chosen such that enough resolution exists to capture mutual information across a

range of relationships, but small enough such that each bin has a fairly large amount of data points. We set nBin to 20, thus giving 400

bins. Finally, nGrid should be significantly larger than nBin such that multiple grid points exist within each coarse bin. As a rule

of thumb we set this value to 3 times nBin, thus 60. While our parameter choices are based on reason, we wish to ensure that the

DREMI score is relatively robust to these choices. We evaluated robustness to changes in the three parameters (see Figure S5A).

We computed kNN-DREMI for 3000 random gene pairs of the EMT data for the following parameter values: k = [1 2 5 10 20],

nBin= [5 10 20 30 40], and nGrid = [20 30 60 90 120], around the default parameter setting k = 10, nBin = 20 and nGrid = 60. To quantify

robustness we computed R2 between each pair of parameter settings, for each of the three parameters. Figure S5A show that the

kNN-DREMI score is highly robust to changes of the parameters within a reasonable range.

Clustering and Ordering Using DREVI
To characterize the dynamics of gene expression during EMT we first require a pseudo-time representing EMT progression.

We decided to use the expression level of the canonical EMT marker Vimentin as a pseudo-time representing EMT progression

(we get similar results using alternative genes as markers, see Figure S6A). We performed the following steps:

1. Filter the genes to include only those that have clear temporal trends along EMT progression based on DREMI with Vimentin.

2. Shape based clustering of the genes, by representing each gene with its vectorized DREVI with Vimentin and clustering these

images.

3. Estimate the timing of peak gene expression for each cluster based on a spline curve, fit to the cluster’s geometric mean.

4. Order the clusters based on their peak timing.

First, we filtered the data. We removed apoptotic cells, based on expression of the mitochondrial gene MT-ND1 (normalized

expression > 5). Next, we removed genes that are expressed in less than 5 cells, as these have a very low signal-to-noise

ratio. We computed DREMI between Vimentin and all genes and removed genes that had less than 0.5 DREMI with Vimentin (the

bottom 1/3 ), as these are likely uninvolved with EMT. We consider the remaining genes (whose DREMI with vimentin is greater

than 0.5) the set of EMT related genes, and limit the rest of the analysis to these genes.

The remaining genes have a temporal trend with Vimentin, resulting in a DREVI image with structure. We vectorized their DREVI

images resulting in a 400x1 vector for each gene, which captures the shape of the temporal trend (see Figure 5Div). Rather than

clustering the genes based on their gene expression, we clustered them based on this vectorized DREVI image, representing their

dynamics along EMT. We used correlation as a similarity metric, as relative intensities better capture the temporal trends of

each gene.

Correlation distance between vectorized DREVI images xs and xt is defined as follows:

dst = 1� ðxs � xsÞðxt � xtÞ
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxs � xsÞðxs � xsÞ0
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxt � xtÞðxt � xtÞ0
q

where
xs =
1

n

X
j

xsj
and
xt =
1

n

X
j

xtj
We constructed an agglomerative hierarchical cluster tree from co
rrelation distances using complete linkage. Complete linkage uses

the largest distance between objects in the two clusters, r and s, to define distance between clusters:

dðr; sÞ= maxðdistðxri; xsjÞÞ; i˛ð1; .; nrÞ; j˛ð1; .; nsÞ
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Clusters weremerged until reaching a stopping criteria of d(r,s) < 1
.2. This clusters the genes based on their relationship with Vimentin

and results in 22 clusters with distinct temporal trends that differ based on shape and timing of the curve (Table S2).

We estimated the timing of peak gene expression for each cluster based on a spline curve fit to the cluster’s geometric mean. The

average DREVI plot per cluster was computed by taking the geometric mean of the vectorized DREVI plots. Because these clusters

share roughly a similar shape, averaging over a number of genes clarifies the shape of the curve and reduces spurious noise that

could mislead peak finding at the level of individual genes. We then fit a spline curve to this averaged DREVI image. The smoothing

spline s is constructed for the smoothing parameter p and the weights wi. The smoothing spline minimizes

p
X
i

wiðyi � sðxiÞÞ2 + ð1� pÞ
Z �

d2s

dx2

�2

dx
where x and y are the coordinates of the 20x20 DREVI image, and
weightsw are the normalized density values in the averaged DREVI

image. The default smoothing parameter p = 0.9 (approximately 1/(1+h3/6) is used, where h is the average spacing of the data points).

Clusters were then ordered based on the timing of their peak expression, genes in cluster 1 peak early along the Vimentin trajec-

tory, while cluster 22 peaks late. The resulting clusters and their ordering appears in Figure 6A and Table S2.

Event ordering robustness to EMT-proxy
TheDREVI based clustering and event-ordering approach has considerable dependency on the pseudo-time, in our case, the expres-

sion of Vimentin as a marker of EMT progression leading to the mesenchymal phenotype. To ensure that the resulting clustering and

ordering of genes is robust to the specific EMT marker selected, we repeated our analysis using three other known EMT markers

(CDH2, ITGb4 andCD44).We used each the expression of each of these genes as a proxy for EMTprogression and followed the steps

described above, replacing Vimentin with CDH2, ITGb4 and CD44 respectively, resulting in 4 different clustering solutions and the

gene ordering associated with each. The resulting heat-maps for each of these solutions look qualitatively similar (Figure S6A).

To evaluate similarity between clustering solutions we use Rand Index, which gives a score between 0 and 1 (0 indicating no

similarity, 1 indicating perfect similarity). We obtain rand index > 0.86 (average rand index = 0.89) indicating a high degree of similarity

between the clustering results (Figure S6B) between all pairs of genes used as EMT proxies. To evaluate similarity between the gene

orderings, we compute Spearman correlation between all pairs of orderings. We obtain correlation > 0.70 (average correlation = 0.77)

indicating that the ordering is consistent (Figure S6B). Combined, these results show that our characterization of gene expression

dynamics along EMT gives consistent results for four different canonical EMT markers.

Transcription Factor Target Prediction
We can combine DREMI with the pseudo-temporal ordering of genes to predict candidate targets of regulatory genes. Wemake two

assumptions:

1. A TF should be predictive of its targets’ expression, evaluated as a high DREMI score between TF and its target.

2. Positively regulated targets reach maximal activation at the same time or following the peak activation of the TF during EMT

progression.

Statistical dependency has frequently been used to infer regulatory networks (Friedman et al., 2000) including between individual

cells (Sachs et al., 2005). Thus, X such that DREMI(TF, X) > threshold is a potential regulatory target of the TF. However, statistical

dependency alone is insufficient to indicate a regulatory or causal relationship. Statistical dependency does not indicate the direction

of influence and in many cases can be caused due to co-regulation by a common factor.

Temporal data is often used to suggest causality. While we only measure a single time point, due to the asynchronous nature of

progression through EMT, we can instead use pseudo-time to provide further support for gene regulation. Specifically, we use the

DREVI-based gene ordering (Figure 6A) and consider genes that peak at the same time or following the peak of the TF during EMT

progression.

Thus for a given TF, our predicted targets are genes that match both the DREMI and the ordering based criteria. In the case of

ZEB1, which we subsequently validate, we consider targets where DREMI(ZEB1, X) > 1 (95 percentile), a total of 1667 genes. There

are 4509 genes that peak with or after ZEB1. Intersecting these two criteria results in 1085 genes, that we consider our predicted

targets of Zeb1 activation (Table S3).

Validation of Zeb1 Targets
To validate our prediction of 1085 targets of ZEB1, we collected an additional scRNA-seq dataset of 3500 cells from an engineered

cell line that has Zeb1 under a DOX-inducible promoter and induced EMT by directly upregulating ZEB1. This cell line is identical to

the wild-type HMLE cell line except that Zeb1, a key regulator of EMT, is under a Dox inducible promoter. Wemeasured the cells after

two days of continuous Dox treatment, which is sufficient to induce significant numbers of mesenchymal cells (10% of the total cell

population). This data thus enables the comparison of EMT that is induced via TGFb stimulation to EMT that is induced directly and

exclusively via Zeb1 overexpression.
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TGFB-induction activates multiple pathways, including Zeb1, to drive the cells toward the mesenchymal phenotype. By contrast,

zeb1-induction is likely to ‘‘skip’’ several steps involved in the transition and directly induce a concise transcriptional program

typically activated at later stages of the transition. Thus, in the Zeb1-induction, targets that fall under Zeb1’s regulatory cascade

(direct and indirect targets) will have higher gene expression, relative to genes that are not targeted by Zeb1. Therefore, we validate

our predicted Zeb1 targets by comparing their relative expression under TGFb versus zeb1 induction of EMT and expect that genes

regulated by Zeb1 to be ranked significantly higher in the Zeb1 induction.

For a given set of genesG, we define an impact score to quantify the impact of perturbation (the Zeb1 induction in this case) on the

ranking of that gene set. We rank the genes from highest to lowest (based on mean expression) for each of TGFb versus zeb1 induc-

tions, and sum the ranks of the gene set under each condition. The impact score is the average difference between the summed ranks

of the two conditions, in N subsamples of G of fixed size S. This subsampling procedure controls for the size ofG, as p values will be

biased toward 0 given larger sized gene sets G.

Let rtðgÞ and rzðgÞ denote the rank of gene g (based on its mean expression as described above) in TGFb-induction and zeb1-

induction respectively. Then:

impactscoreðGÞ= 1

N

XN
j = 1

 XS
i = 1

rz
�
gj
i

��XS
i = 1

rt
�
gj
i

�!
;

Here, we set S = 200 and N = 1000.
A large impact score corresponds to an increase in relative expression of the predicted targets under Zeb1 induction but not

in TGFb induction. To compute the significance of this impact score, we produce subsamples of size S of the background

gene set (all genes involved in EMT, DREMIwith VIM> 0.5) and compute the impact score of those (as above) and repeat thisM times,

with M set to 1000. The p value is the fraction of subsamples that have equal or greater impact score than the predicted gene set G.

ATAC-seq Processing Pipeline
To systematically validate our target predictions, we used ATAC-seq (Assay for Transposase-Accessible Chromatin using

sequencing) (Buenrostro et al., 2013) as an independent and well-accepted approach for target prediction (Buenrostro et al.,

2013; Kundaje et al., 2015).

The following filtering and analysis steps were carried out in order to go from raw sequencing data from the ATAC-seq protocol to

calling peaks:

1. Adapters and low quality bases were trimmed from reads using Trimmomatic v0.36 in paired end mode. Minimum retained

read length is 30bp, and first/last 5bp are trimmed off the ends if low-quality. Also use a sliding window to trim reads if below

quality phred score 10. Nextera transposase adapters from Trimmomatic were used to detect adaptor contamination.

2. Reads were aligned with bowtie2 using default parameters for paired-end reads to hg19.

3. Alignments were filtered with MAPQ below 10 using samtools after which the bam file was sorted by chromosome and

position.

4. Duplicates were removed with MarkDuplicates from picard with default parameters, except REMOVE_DUPLICATES option is

set to true so that duplicates are removed instead of flagged.

5. All reads that map to the mitochondrial genome were removed.

6. Peaks were called using MACS2 in paired-end mode with an FDR of 0.1
ATAC-seq Validation of TF-target Predictions
Once we identified robust peaks from the ATAC-seq data, we used the following procedure to obtain TF targets from the ATAC-seq

peaks. To quantify which TFs bind at the peaks we computed TFmotif binding scores for a large set of known TFs based on themotif

database cisPB (Weirauch et al., 2014), obtained from the meme suite’s motif databases. We used FIMO (Grant et al., 2011), with

default parameters, to identify bindingmotifs and peak locations with significant predicted binding were associated with their closest

gene. This resulted in a list of targets for each of 418 TFs with significant biding scores.

There was a set of 292 TFs for which we both had computationally predicted targets (TFs with kNN-DREMI > 0.5) and ATAC-seq

predicted targets (as described above), for we could compare the two sets of predicted genes. A significant overlap between these

two independent sets of predictions, derived from different biological replicates, different technologies (scRNA-seq verses

ATAC-seq) and two computational approaches for prediction (DREMI verses motif analysis) would indicate that these independently

derived predictions are likely correct. For each TF, we use the hypergeometic distribution to compute the significance of the inter-

section between its two target sets:

PðX = kÞ=

�
N
k

��
N� K
n� k

�
�
N
n

�
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Here, N = total number of genes, K = size of the ATAC-seq target
 set, n is the size of our predicted target set, and k is the observed

intersection size. We use the one-sided hypergeometric test to test whether our observed intersection is significantly larger than is

expected from random. Almost all TFs, 291/292, have a higher overlap than expected by chance, after false discovery correction we

find that 268 out of 292 TFs (92%) have a significant intersection size (Figures 6F and 6G).

Additionally, for each of 418 TFs that we obtained ATAC-seq targets for, we compare the distribution of the DREMI scores between

TF to all targets with the DREMI-scores of all non-targets. We then computed a one-sided KS-test on these distributions to determine

if the DREMI values of the ATAC-seq targets are significantly higher than the DREMI values of the non-targets. We find that 372 out of

418 TFs (89%) have p < 0.05, and thus have a significantly higher DREMI score with their ATAC-seq targets than with other genes.

This is not the case for data prior to DREMI (Figure S6D).

DATA AND SOFTWARE AVAILABILITY

Python, MATLAB and R implementations of MAGIC are available on GitHub:

https://github.com/DpeerLab/magic or https://github.com/KrishnaswamyLab/magic

SEQC single-cell analysis pipeline is available on GitHub:

https://github.com/dpeerlab/seqc

The accession number for the single-cell RNA-seq and ATAC-seq data reported in this paper is GEO: GSE114397.
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Supplemental Figures

Figure S1. Adaptive Kernel and Optimal t, Related to Figure 1

(A) Comparison between Adaptive and Non-adaptive Kernels. 3D-scatterplot of CDH1, VIM and FN1, colored by ZEB1 expression after MAGIC performed with

different amounts of diffusion (t = 0,1,3,6), using a non-adaptive kernel. The fixed kernel alters and deforms the shape of the data as cells in denser regions have

more neighbors, while cells in sparse areas have fewer cells to exchange information. The same data with the adaptive kernel as inMAGIC reveals finer structures

in the data.

(B) Synthetic data generated on a manifold that has three sinusoidal arms, without noise, with Gaussian noise, denoised using MAGIC with the nonadaptive

kernel, and denoised using MAGIC with the adaptive kernel. Only the adaptive kernel recovers the true underlying manifold.

(legend continued on next page)



(C) Convergence behavior for optimal t for: EMT data, hematopoiesis data (Paul et al., 2015), andmouse retinal data (Shekhar et al., 2016), with optimal t values of

6, 7 and 6 respectively (shown by arrows).

(D) (i) PCA on a randomly generated tree with 4 branches rotated into higher dimensions. (ii) Convergence behavior for optimal t for different amounts of dropout

noise added to the random tree. Dropout was done to achieve 0%, 2%, 39%and 79%zeros. More noise results in convergence at a higher t. (iii) For the same tree

and noise levels, the R-squared of the imputed data versus the ground truth data (with no dropout noise) is shown. Maximum R-squared corresponds to the

optimal t. (iv) PCA on the same tree with different amounts of dropout noise (rows), at different levels of imputation (columns). Green boxes show the

optimal t value for each level of dropout.



Figure S2. MAGIC Recovers Trends in the Data, Related to Figure 2

(A)MAGIC reveals multi-modal gene distributions in bonemarrow data shown in Figure 2. Histograms per cell cluster for CD11b andCD32 computed using kernel

density estimation on the data before (top) and after (bottom) MAGIC. Due to drop-out, most density is concentrated unimodally at zero. After MAGIC we observe

unique multi-modal distributions per gene, with different cell clusters represented by different peaks, matching known expression in these immune subsets.

(B) The gene expression matrix with 206 worms sorted by developmental time along the y axis, and genes (along columns) clustered hierarchically. Left: the

original matrix, Middle: the matrix after dropout resulting in 80% of the values set to 0, and Right: restored values after MAGIC.

(C) Scatterplots of gene expression (y axis) as a function of developmental time (x axis) for C27A7.6 and C53D5.2. Left: the original gene expression versus time,

Middle: gene expression after dropout, Right: after MAGIC (with diffusion time t = 5).



Figure S3. Validation and Robustness of MAGIC, Related to Figure 4

(A) (i) Line plots showing the recovery of values (R2 of imputed values with original values) after MAGIC at various diffusion times t. The different curves show

recovery for different levels of dropout (purple = 0%, yellow = 60%, red = 80%, blue = 90%). (ii) Shows line plots quantifying the recovery of gene-gene cor-

relations after MAGIC with various diffusion times. The original correlation matrix is compared to the imputed correlationmatrix and thematch is quantified by R2.

(B) (i) 2D scatterplot of canonical EMT genes E-cadherin and Vimentin, colored by ZEB1, before artificial dropout. Bii) The plot of (Bi) after 80% dropout. Biii)

sample scatterplot as Bi after MAGIC, Biv) 3-D scatterplot of E-cadherin, Vimentin and Fibronectin after MAGIC.

(legend continued on next page)



(C) R2 of original to re-imputed values on 9,571 genes divided into two groups based on expression levels (blue = 6381 high expressing genes, red = 3190 low

expressing). The R2 was computed (original versus imputed) per value, per cell and per gene for different levels of cell subsampling. The line plots show average

and standard deviation between full and subsampled data.

(D) MAGIC’s robustness to various parameters including ka, t and number of PCA components.

(E) (i) 3D scatterplots of CDH1, VIM, and FN1 colored by Zeb1 are shown. The green box signifies the optimal t. (ii) Robustness of optimal t computation.

Optimal t analysis was performed on 20 subsamples of 50% of the EMT data. Shown is the mean and standard deviation (error bars).



Figure S4. MAGIC Enables Archetype Analysis, Related to Figure 4

(A) Robustness of the EMT archetype analysis shown on the 3D PCA plot. The EMT data was subsampled to 90% of the cells 100 times and archetypes (colors in

plot) were inferred for each subsample. For each archetype the average Pearson correlation is shown between the 100 replicates of each archetype.

(B) Archetype analysis on the same data as Figure 4, before MAGIC. 3D scatterplots annotated by red dots representing each of the 10 archetypes in the data.

(Left) Canonical EMT genes CDH1, VIM and FN1, and (right) 3D PCA plot. Note, two archetypes pinpoint outlier cells and are removed from further analysis.

(C) Leftmost plot shows 3D PCA plot of archetypal neighborhoods, with each cell colored by its associated archetype, gray cells are not associated with any

archetype. The remaining panels show histograms representing the distributions of various genes in archetypal neighborhoods, color-coded by the colors shown

in the leftmost plot. Most of the data is zero and does not capture the heterogeneity captured in the same analysis after MAGIC (Figure 4D).

(D) A subset of differentially expressed genes for each archetype including the set of highlighted genes from Figure 4E. Here we see little difference across the

archetypes found on this data.



Figure S5. Evaluation of kNN-DREMI, Related to Figure 5

(A) Heatmap depicting R2 between DREMI values computed using different parameter choices, over 3000 pairs of randomly chosen genes, showing robustness

of kNN-DREMI to a range of values for k, the nearest neighbor cardinality for the density estimate, nBin, number of bins used for coarse graining density estimate,

and nGrid, the grid size on which kNN-based density is estimated.

(B) Histogram of kNN-DREMI values over gene pairs in EMT data.

(C) kNN-DREMI before (x axis) and after (y axis) MAGIC colored by density. Each point represents one of 28910 relationships between VIM and all other genes

present in our EMT dataset. Scatterplot indicates a higher range of kNN-DREMI (0-1.6 versus 0-0.4) after imputation and values do not correlate well with their

pre-MAGIC values.

(D) Absolute Pearson correlation computed on the same post-MAGIC gene-gene relationships versus kNN-DREMI. The black box indicates a region of low

Pearson correlation but high kNN-DREMI (r < 0.05, DREMI > 0.9).

(E) 6 gene-gene relationships (3-well known, and 3 picked from the black box in D) from EMT data after imputation, with Pearson correlation and kNN-DREMI

scores shown, indicating that kNN-DREMI is much more effective at recognizing non-linear relationships.

(F) Similar analysis as is shown in (E) for the bone marrow data.



Figure S6. Robustness of Pseudo-Temporal Ordering of Genes, Related to Figure 6

To obtain an ordering of genes during the EMT progression we use VIM as a marker of EMT progression. To show that this ordering is robust, we re-compute the

clustering and gene ordering using three additional canonical EMT markers: CDH2 (N-CADHERIN), ITGB4 (CD104) and CD44.

(A) Shows gene expression (x axis) versus EMT marker expression (y axis) similar to Figure 5A.

(B) Shows the correlation between the different gene orderings using Rand Index and rank correlation.

(C) Histograms of DREMI scores of Zeb1 versus all genes for the EMT data before MAGIC (red) and after MAGIC (blue).

(D) PDFs computed using kernel density estimation of DREMI values of three TFs (ZEB1, SNAI1 and MYC) versus all other genes for the EMT data. The DREMI

values were split into ATAC-seq derived targets (blue) and non-targets (red) and the distributions were computed for the data before MAGIC (top row) and after

MAGIC (bottom row). For each plot we computed the Two sided KS test that the DREMI values of the targets are bigger than the DREMI values of the non-targets.

For the values before MAGIC none of the TFs are significant, while after MAGIC all TFs are significant.



Figure S7. Comparison of MAGIC to Other Imputation Methods, Related to Figure 7

(A) Comparison of recovery with NNMC (Candes and Recht, 2012), Low-Rank Approximation (LRA) (Achlioptas and McSherry, 2007) and MAGIC on various

edges of the EMT Dataset. Ai) 3D Scatterplot of VIM, CDH1 and FN1, with cells colored by ZEB1. Only MAGIC is able to impute the finer branches leading to the

stable mesenchymal state (high ZEB1) and apoptosis. Aii) Scatterplot of CDH1 versus VIM showing a clear negative relationship after MAGIC, while other

(legend continued on next page)



methods are able to only catch slight negative correlation. Aiii) Ezh2 versus VIM: only MAGIC is able to impute a negative quadratic relationship. Aiv) Linear

relationship of ZEB1 versus SNAI1 imputed by all methods. Av) Non-linear negative relationship between N-cadherin and E-cadherin.

(B) Comparison of imputation methods on gene-gene associations from the bone marrow dataset (Figure 1). Bi) 3D scatterplot of CD34 (a progenitor marker),

GATA1 (an erythropoiesis marker) and GATA2 (a developmental marker) colored by cluster ID, shows MAGIC connecting clusters into an arc where only

the erythroid branch shows increase in GATA1. Bii) CD34 versus CD235a (an erythroidmarker), whereMAGIC successfully imputes a negative relationship in only

the erythroid branch of the data. NNMC imputes a positive relationship and LRA shows a fuzzy relationship. Biv) CEBPA (a myeloid marker). versus MEIS1

(an erythroidmarker) shows a negative relationship on erythrocytes as imputed byMAGIC andmild positive relationship onmyeloid cells. Bv) Positive relationship

between CEBPA and ELANE (neutrophil markers). imputed by LRA and MAGIC, although MAGIC shows the more pronounced positive relationship expected for

these markers.

(C) Comparison of imputation methods on synthetic Data. We use a 2D Swiss roll, embedded in 5000 dimensions (by QR rotation) with Gaussian and dropout

noise. First two PCA components of the noiseless high-dimensional Swiss roll and Swiss roll after Gaussian noise are shown, as well as the same PCA com-

ponents of the Swiss roll after imputation by NNMC, LRA and MAGIC. Only MAGIC is able to reverse Gaussian noise along the Swiss Roll.

(D) Shows similar data as C, but recovery after the addition of Gaussian noise along with random dropout. The dropout was also increased along the curve of the

Swiss Roll. Only MAGIC is able to recover the coiling shape of the Swiss roll after dropout.
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